AI Article Synopsis

  • Developments in bioengineering and nanotechnology are advancing research on biological communication systems, but challenges arise from the delayed arrival of molecules that can distort data signals.
  • Existing models typically overlook the complexities of detecting distorted signals at the receiver, focusing too much on channel characteristics.
  • The paper introduces BioRxToolbox, a framework for designing effective molecular communication systems that uses specific techniques to minimize signal interference and efficiently encode and decode information in biological settings.

Article Abstract

Developments in bioengineering and nanotechnology have ignited the research on biological and molecular communication systems. Despite potential benefits, engineering communication systems to carry data signals using biological messenger molecules and engineered cells is challenging. Diffusing molecules may fall behind their schedule to arrive at the receiver, interfering with symbols of subsequent time slots and distorting the signal. Existing theoretical molecular communication models often focus solely on the characteristics of a communication channel and fail to provide an end-to-end system response since they assume a simple thresholding process for a receiver cell and overlook how the receiver can detect the incoming distorted molecular signal. In this paper, we present a model-based and computational framework called BioRxToolbox for designing diffusion-based and end-to-end molecular communication systems coupled with synthetic genetic circuits. We describe a novel framework to encode information as a sequence of bits, each transmitted from the sender as a burst of molecules, control cellular behavior at the receiver, and minimize cellular signal interference by employing equalization techniques from communication theory. This approach allows the encoding and decoding of data bits efficiently using two different types of molecules that act as the data carrier and the antagonist to cancel out the heavy tail of the former. Here, BioRxToolbox is demonstrated using a biological design and computational simulations for various communication scenarios. This toolbox facilitates automating the choice of communication parameters and identifying the best communication scenarios that can produce efficient cellular signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636266PMC
http://dx.doi.org/10.1093/synbio/ysae015DOI Listing

Publication Analysis

Top Keywords

molecular communication
12
communication systems
12
communication
9
computational framework
8
communication scenarios
8
molecular
5
biorxtoolbox computational
4
framework streamline
4
streamline genetic
4
genetic circuit
4

Similar Publications

Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrate that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveil how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site.

View Article and Find Full Text PDF

is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.

View Article and Find Full Text PDF

Since the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported from Wuhan, China, there has been a surge in scientific research to find a permanent cure for the disease. The main challenge in effective drug discovery is the continuously mutating nature of the SARS-CoV-2 virus. Thus, we have used the I-TASSER modeling to predict the structure of the SARS-CoV-2 viral envelope protein followed by combinatorial computational assessment to predict its putative potential small molecule inhibitors.

View Article and Find Full Text PDF

Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation.

J Biomol Struct Dyn

February 2025

Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.

The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction.

View Article and Find Full Text PDF

Sex-dependent molecular landscape of Alzheimer's disease revealed by large-scale single-cell transcriptomics.

Alzheimers Dement

December 2024

Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.

Introduction: Alzheimer's disease (AD) shows significant sex differences in prevalence and clinical manifestations, but the underlying molecular mechanisms remain unclear.

Methods: This study used a large-scale, single-cell transcriptomic atlas of the human prefrontal cortex to investigate sex-dependent molecular changes in AD. Our approach combined cell type-specific and sex-specific differential gene expression analysis, pathway enrichment, gene regulatory network construction, and cell-cell communication analysis to identify sex-dependent changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!