AI Article Synopsis

Article Abstract

Anti-microbial nanopatterns have attracted considerable attention; however, its principle is not yet fully understood, particularly for inorganic nanopatterns. Titanium nanosurfaces with dense and anisotropically patterned nanospikes regulate biological functions with multiple physical stimulations, which may be because of the nanopattern-induced alternation of surface physical properties. This study aimed to determine the antimicrobial capability of titanium nanosurfaces and their mechanisms. Two types of alkali-etched titanium nanosurfaces with isotropically or anisotropically patterned nanospikes had markedly denser surface protrusions, greater superhydrophilicity, and greater negative charge than machined or micro-roughened titanium surfaces. The crystallographic properties of anisotropic titanium nanosurfaces were similar to those of isotropic nanosurfaces, but markedly higher in electric reactivity at nanoscale. The maximum value of the contact potential difference on titanium surfaces was significantly correlated with the product of the density and anisotropy in the distribution pattern of surface protrusions. Isotropic titanium nanosurfaces did not inhibit the attachment of gram-positive cocci, such as , whereas anisotropic titanium nanosurfaces substantially inhibited gram-positive cocci attachment. Most gram-negative bacilli, , died via swelling of the cell body on anisotropic titanium nanosurfaces within 6 h of incubation, in contrast to other titanium surfaces where most of the cells did not lose viability or undergo morphological changes. The extent of cell swelling was positively correlated with the electric reactivity of the titanium surfaces. Titanium nanosurfaces with anisotropically patterned dense nanospikes exerted anti-biofouling or mechano-bactericidal effects on gram-positive or negative bacteria with electrical cue induced by the anisotropy of the nanospike patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636339PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101352DOI Listing

Publication Analysis

Top Keywords

titanium nanosurfaces
36
titanium surfaces
16
titanium
13
anisotropically patterned
12
anisotropic titanium
12
nanosurfaces
10
anti-biofouling mechano-bactericidal
8
mechano-bactericidal effects
8
electrical cue
8
patterned nanospikes
8

Similar Publications

Micro- and nanomorphological modification and roughening of titanium implant surfaces can enhance osseointegration; however, the optimal morphology remains unclear. Laser processing of implant surfaces has demonstrated significant potential due to its precision, controllability, and environmental friendliness. Femtosecond lasers, through precise optimization of processing parameters, can modify the surface of any solid material to generate micro- and nanomorphologies of varying scales and roughness.

View Article and Find Full Text PDF

Anti-microbial nanopatterns have attracted considerable attention; however, its principle is not yet fully understood, particularly for inorganic nanopatterns. Titanium nanosurfaces with dense and anisotropically patterned nanospikes regulate biological functions with multiple physical stimulations, which may be because of the nanopattern-induced alternation of surface physical properties. This study aimed to determine the antimicrobial capability of titanium nanosurfaces and their mechanisms.

View Article and Find Full Text PDF

Objective: Advances in surface architecture and technology have made interbody fusion devices more bioactive, with the hope of facilitating the fusion process more successfully. The advent of these increasingly bioactive implants may reduce reliance on more expensive biologics that have previously been used to achieve high fusion rates.

Methods: A retrospective review of prospectively collected data (August 2018-December 2019) was conducted of consecutively performed anterior lumbar interbody fusions in which an acid-etched, nanosurface-modulated, titanium interbody device packed only with corticocancellous allograft chips and local blood was used.

View Article and Find Full Text PDF

Titanium nanotopography enhances mechano-response of osteocyte three-dimensional network toward osteoblast activation.

Biomater Adv

October 2024

Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan. Electronic address:

The bone turnover capability influences the acquisition and maintenance of osseointegration. The architectures of osteocyte three-dimensional (3D) networks determine the direction and activity of bone turnover through osteocyte intercellular crosstalk, which exchanges prostaglandins through gap junctions in response to mechanical loading. Titanium nanosurfaces with anisotropically patterned dense nanospikes promote the development of osteocyte lacunar-canalicular networks.

View Article and Find Full Text PDF

Improved Biocompatibility and Osseointegration of Nanostructured Calcium-Incorporated Titanium Implant Surface Treatment (XPEED).

Materials (Basel)

June 2024

Department of Dental Laboratory Science, College of Health Sciences, Catholic University of Pusan, 57 Oryundae-ro, Geumjeong-gu, Busan 46252, Republic of Korea.

Surface treatment of implants facilitates osseointegration, with nanostructured surfaces exhibiting accelerated peri-implant bone regeneration. This study compared bone-to-implant contact (BIC) in implants with hydroxyapatite (HA), sand-blasted and acid-etched (SLA), and SLA with calcium (Ca)-coated (XPEED) surfaces. Seventy-five disk-shaped grade 4 Ti specimens divided into three groups were prepared, with 16 implants per group tested in New Zealand white rabbits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!