Introduction: Temporary and extended drought stress accelerates phytohormones and reactive oxygen species (ROS) in plants, however, the fate of the plants under stress is mostly determined by the metabolic and molecular reprogramming, which can be modulated by the application of habitat-adapted fungi that triggers resistance to stress upon symbiotic association.

Methods: The present research exhibited the exploitation of the newly isolated, drought habitat-adapted fungal endophytic consortium of SAB () and CBW (), on maize under drought stress. SAB and CBW primarily hosted the root tissues of L., which have not been reported earlier, and sufficiently produced growth-promoting metabolites and antioxidants.

Results: SAB and CBW adeptly inhabited the maize roots. They promoted biomass, primary metabolites, osmolytes (protein, sugar, lipids, proline, phenolics, flavonoids), and IAA production while reducing tannins, ABA, and HO contents and increasing antioxidant enzyme activities. In addition, the enhanced adventitious root development at the root/stem interface, and elongated main root development optimum stomatal activity of SAB- and CBW-inoculated maize plants were observed under drought stress. SAB and CBW modulated the expression of the , , and genes in the maize shoot and root tissues under drought stress vs. control, signifying an essential regulatory function for SAB/CBW-induced drought stress tolerance via phytohormonal signaling pathway leading to the antioxidant upregulation.

Discussion: These findings imply that the exogenous administration of the SAB/CBW consortium might be a rather efficient strategy that contributes to optimizing the physio-hormonal attributes and antioxidant potential to alleviate the drought stress in maize.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634847PMC
http://dx.doi.org/10.3389/fmicb.2024.1488639DOI Listing

Publication Analysis

Top Keywords

drought stress
28
sab cbw
16
stress
9
drought
8
maize drought
8
stress sab
8
root tissues
8
root development
8
maize
6
drought-tolerant fungal
4

Similar Publications

metaGE: Investigating genotype x environment interactions through GWAS meta-analysis.

PLoS Genet

January 2025

Génétique Quantitative et Evolution - Le Moulon, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.

Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments.

View Article and Find Full Text PDF

Drought stress substantially decreases crop yields by causing flowers and fruits to detach prematurely. However, the molecular mechanisms modulating organ abscission under drought stress remain unclear. Here, we show that expression of CALMODULIN2 (CaM2) is specifically and sharply increased in the pedicel abscission zone (AZ) in response to drought and plays a positive role in drought-induced flower drop in tomato (Solanum lycopersicum).

View Article and Find Full Text PDF

Anthropogenically induced climate change has significantly increased the frequency of acute weather events, such as drought. As human activities amplify environmental stresses, animals may be forced to prioritize survival over behaviors less crucial to immediate fitness, such as socializing. Yet, social bonds may also enable individuals to weather the deleterious effects of environmental conditions.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

SCPL48 regulates the vessel cell programmed cell death during xylem development in Arabidopsis thaliana.

Int J Biol Macromol

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. Electronic address:

Secondary cell wall (SCW) deposition is tightly coordinated with programmed cell death (PCD) during xylem development and plays a crucial role in plant stress responses. In this study, we characterized a serine carboxypeptidase-like gene, SCPL48, which exhibits xylem cell-specific expression patterns in stem xylem during vascular development. The scpl48 plants exhibited reduced stem xylem cell numbers, particularly vessel cells, accompanied by delayed organelle degradation during PCD and increased secondary wall thickness in xylem vessel cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!