A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionv94ikmgpq8kqfipcvk74oo2cjcnad9jp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving performance metrics in WBANs with a dynamic next beacon interval and superframe duration scheme. | LitMetric

AI Article Synopsis

  • The growth of networking and communication technologies has led to increased interest in Wireless Body Area Networks (WBANs) for both medical and non-medical applications, especially for remote patient monitoring.
  • WBAN performance issues arise during synchronization and data transmission due to varying traffic loads, causing delays, energy waste, and potential data loss in time-sensitive scenarios.
  • The proposed Dynamic Next Beacon Interval and Superframe Duration Scheme (DNBISD) uses a fuzzy logic approach to adapt synchronization parameters, improving data transmission efficiency, delivery ratios, and energy consumption in WBANs.

Article Abstract

The advancement of networking, information, and communication technologies has fueled the popularity of Wireless Body Area Networks (WBANs) in both medical (remote patient monitoring) and non-medical sectors. Due to low, medium, and high data traffic requirements, WBAN performance suffers during the synchronization process that generates periodic beacon frames between sensor nodes and the coordinator. It also suffers when sensor nodes implicitly send data to the coordinator during the fixed time slot using the Contention Access Period (CAP). In this study, we propose a solution called Dynamic Next Beacon Interval and Superframe Duration Scheme (DNBISD) to tackle these issues of the IEEE 802.15.4 standard. This standard relies on a Beacon Interval (BI) and CAP for synchronization and data transmission between sensor nodes and the coordinator. However, the standard must adapt to BI and CAP's changing traffic load requirements, resulting in drawbacks such as prolonged packet delays, increased energy consumption, and potential data loss, particularly in real-time patient monitoring applications. In order to overcome these challenges, our DNBISD scheme employs a fuzzy approach to adapt the BI and CAP based on requested synchronization and data considering input parameters like packet received ratio and buffer ratio. The inference system utilizes the Takagi, Sugeno, and Kang (TSK) fuzzy model for rational quantitative analysis. Simulations demonstrate that our proposed scheme significantly enhances data transmission, boosts the average packet delivery ratio and throughput, and reduces the coordinator's average packet loss ratio and energy consumption. Consequently, this improvement allows for more efficient data transfer among numerous nodes within the specified superframe structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636829PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e26468DOI Listing

Publication Analysis

Top Keywords

beacon interval
12
sensor nodes
12
dynamic beacon
8
interval superframe
8
superframe duration
8
duration scheme
8
patient monitoring
8
nodes coordinator
8
synchronization data
8
data transmission
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!