Over the past decade, our institution delivered conventional total body irradiation (TBI) using Elekta's Monaco treatment planning system (TPS) with an extended SSD field arrangement and 18 megavoltage (MV) energy lateral fields. In 2020, there was a transition to the Eclipse™ treatment planning system and Truebeam® linear accelerators with 6 MV and 10 MV energies. These changes meant that essential components of the existing technique were unavailable for clinical use and a new approach to the institution technique was required to ensure continuation of service. The aim was to implement a volumetric-modulated arc therapy (VMAT) TBI technique using existing infrastructure, the new planning system and treatment hardware to continue providing a TBI service for patients of all ages, including those under general anaesthetic (GA). A multidisciplinary team within the institution was created to evaluate existing literature and to implement a VMAT TBI technique that was feasible within our institution. This article will discuss the resultant technique, the practicalities faced and the radiation therapy pathway within our institution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmrs.844 | DOI Listing |
Turk Arch Otorhinolaryngol
January 2025
All India Institute of Medical Sciences, Department of Otorhinolaryngology, Jodhpur, Rajasthan, India.
Objective: To compare the ototoxicity and survival in head and neck carcinoma patients treated with sequential (SEQ) and simultaneous integrated boost (SIB) of volumetric modulated arc therapy (VMAT).
Methods: This long-term prospective study enrolled patients with histologically confirmed head and neck carcinoma, all receiving VMAT treatment. Audiological assessments were done using various tests at baseline, two weeks, treatment completion, six months, and 12 months.
Clin Oncol (R Coll Radiol)
December 2024
Radiation Oncology Network, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. Electronic address:
Aims: Unresectable cutaneous squamous cell cancer of the head and neck (HNcSCC) poses treatment challenges in elderly and comorbid patients. Radiation therapy (RT) is often employed for locoregional control. This study aimed to determine progression-free survival (PFS) and overall survival (OS) outcomes achieved with upfront RT in unresectable HNcSCC.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
Purpose: To use imaging data from stereotactic MR-guided online adaptive radiotherapy (SMART) of ultracentral lung tumors (ULT) for development of a safe non-adaptive approach towards stereotactic body radiotherapy (SBRT) of ULT.
Patients And Methods: Analysis is based on 19 patients with ULT who received SMART (10 × 5.0-5.
Radiat Oncol
January 2025
Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
Purpose: In this retrospective study, we aimed to evaluate the efficacy and incidence of radiation-induced brain necrosis (RBN) after volumetric modulated arc therapy-based stereotactic irradiation (VMAT-STI) for brain metastases.
Methods: In the 220 brain metastatic lesions included between January 2020 and June 2022, there were 1-9 concurrently treated lesions (median 1). A biologically effective dose (BED)10 of 80 Gy and a reduced BED10 of 50 Gy were prescribed to the gross tumor volume (GTV) and planning target volume (PTV) (PTV = GTV + 3 mm) margins, respectively.
Adv Radiat Oncol
December 2024
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.
Purpose: Breast cancer radiation therapy (RT) techniques have historically delivered mean heart doses (MHDs) in the range of 5 Gy, which have been found to predispose patients to cardiopulmonary toxicities. The purpose of this study was to apply artificial intelligence (AI) cardiac substructure auto-segmentation to evaluate the corresponding substructure doses, whether there are laterality- and technique-specific differences in these doses, and if the doses are significantly associated with cardiorespiratory fitness after state-of-the-art RT planning and delivery for breast cancer.
Methods And Materials: Cardiopulmonary substructures were AI auto-segmented.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!