Liupao tea (LPT) is a Chinese dark tea known to possess a unique flavour. Microbial fermentation plays a crucial role in flavour development and enrichment. Currently, the phytochemical profiles and bioactivities of LPT with and without fermentation are not fully known. In this study, we compared the chemical composition of raw tea (SF), stale-aroma (SA), and betelnut-aroma (BA) type LPT through the application of GC/LC-MS-based metabolomics, and experimentally investigated their bioactivities antioxidant, anti-inflammatory, hypolipidemic, and hypoglycemic assays . The results indicated that fermentation enhanced the flavour of LPT as evidenced by the sweetness-producing substances, decreased bitterness and astringency-related compounds and enriched abundance of aroma-generating compounds. Two and four volatiles were detected to be major contributors to the aroma in SA and BA, respectively. Fatty acids and phosphatidylcholines were the primary lipids, among which the lysing diacylglycerol trimethyl homoserines were found to be a new class of lipids in LPT. Notably, the fermentation resulted in the degradation of compounds, particularly glycerophospholipids and saccharolipids. SF had the highest level of bioactivity, followed by BA and SA. These findings expand the present understanding regarding the development of flavour, nutrition, and medicinal value of LPT. Moreover, they provide a theoretical basis for the identification of BA and SA and serve as a reference value for consumers in their selection of LPT products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4ay01672f | DOI Listing |
Foods
December 2024
Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India.
The current study investigated the impact of nutmeg essential oil (NEO) and tea tree essential oil (TTEO) on the preservation of raw chicken fillets during nine days of refrigerated storage study. The primary aim was to explore the antioxidant and antimicrobial properties of these essential oils (EOs) and assess their ability to extend the shelf life of poultry meat. Gas chromatography-mass spectrometry (GC-MS) was utilized to identify the chemical compositions of NEO and TTEO, revealing the presence of compounds like myristicin and terpenoids, known for their antimicrobial and antioxidant activities.
View Article and Find Full Text PDFFoods
December 2024
IPREM, Institut des Sciences Analytiques et de Physicochimie Pour L'environnement et les Matériaux, UMR 5254, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, Helioparc, 2 Avenue President Angot, 64053 Pau, CEDEX 9, France.
Tea is one of the most consumed beverages in the world and presents a great aromatic diversity depending on the origin of the production and the transformation process. Volatile organic compounds (VOCs) greatly contribute to the sensory perception of tea and are excellent markers for traceability and quality. In this work, we analyzed the volatile organic compounds (VOCs) emitted by twenty-six perfectly traced samples of tea with two analytical techniques and two data treatment strategies.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China. Electronic address:
The microRNAs and phasiRNAs of plant are small non-coding RNAs with important functions through regulating gene expression at the post-transcriptional level. However, identifying miRNAs, phasiRNAs and their target genes from numerous sequencing raw data requires multiple software and command-line operations, which are time-consuming and labor-intensive for non-model plants. Therefore, we present CsMPDB (miRNAs and phasiRNAs database of Camellia sinensis), an interactive web application with multiple analysis modules developed to visualize and explore miRNA and phasiRNA in tea plants based on 259 sRNA-seq samples and 24 degradome-seq samples in NCBI.
View Article and Find Full Text PDFFood Chem
December 2024
School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China. Electronic address:
The waste Lentinus edodes stalks from Lentinus edodes processing were used as raw materials by the steam explosion to prepare modified Lentinus edodes stalks dietary fiber and combined with tea polyphenols to form the SE-DF-tea polyphenols complex (SE-DF-TPC). The SE-DF-tea polyphenols mixture (SE-DF-TPM) was prepared according to the complex's optimal adsorption conditions. Fluorescence microscopy, Fourier transform infrared spectroscopy, particle size measurement, thermogravimetric analysis, and X-ray diffraction were used to analyze its structure, and the thermal stability of the complex and its adsorption capacity for lipids, cholesterol, and cholates were studied.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
The use of alternative ingredients as supplements to or blends with kombucha tea to improve organoleptic properties and health effects has recently increased. Indian gooseberry fruit is among the most promising alternative raw materials for producing functional kombucha since the berries contain several beneficial substances. In this study, the production of functional kombucha beverages from fusions of black tea and Indian gooseberry fruit homogenate (IGH) was investigated, and the chemical and biological properties of kombucha products were evaluated and compared with those of traditional black tea kombucha products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!