Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rapid development of photovoltaic (PV) technologies is expanding their applications beyond conventional outdoor energy harvesting into innovative smart-life energy solutions. This review examines the most recent progress in materials and device designs for various emerging PV systems, particularly in indoor and low-light environments, semitransparent devices, and flexible, wearable applications. These advancements have great potential to support autonomous smart life, enhance the energy efficiency of building-integrated solutions, and improve wearable technologies. Despite these gains, challenges such as improving efficiency, durability, scalability, and affordability remain, requiring interdisciplinary collaboration and further research to fully unlock PV technologies' role in sustainable, energy-efficient smart life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc05210b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!