A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advances in materials and devices for smartlife photovoltaic innovations. | LitMetric

Advances in materials and devices for smartlife photovoltaic innovations.

Chem Commun (Camb)

Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.

Published: December 2024

The rapid development of photovoltaic (PV) technologies is expanding their applications beyond conventional outdoor energy harvesting into innovative smart-life energy solutions. This review examines the most recent progress in materials and device designs for various emerging PV systems, particularly in indoor and low-light environments, semitransparent devices, and flexible, wearable applications. These advancements have great potential to support autonomous smart life, enhance the energy efficiency of building-integrated solutions, and improve wearable technologies. Despite these gains, challenges such as improving efficiency, durability, scalability, and affordability remain, requiring interdisciplinary collaboration and further research to fully unlock PV technologies' role in sustainable, energy-efficient smart life.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc05210bDOI Listing

Publication Analysis

Top Keywords

smart life
8
advances materials
4
materials devices
4
devices smartlife
4
smartlife photovoltaic
4
photovoltaic innovations
4
innovations rapid
4
rapid development
4
development photovoltaic
4
photovoltaic technologies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!