Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Making use of novel materials to develop efficient catalysts is one of the research hotspots for CO hydrogenation to methanol. Herein, UiO-66, a typical Zr-MOF, was modified by ethylene diamine tetraacetic acid (EDTA) to serve as a substrate for the synthesis of AuCu bimetallic catalysts. The resultant AuCu@UiO-66-EDTA catalyst exhibited a superior methanol production rate, which delivered a high space-time yield of methanol (3.34 g g h) at 250 °C and 3.0 MPa. The EDTA modification was found to effectively confine AuCu nanoparticles inside the framework of MOFs, which significantly reduced the metal particle size and enriched the oxygen vacancy concentration. As a consequence, more active sites were generated for methanol synthesis. Moreover, the AuCu@UiO-66-EDTA catalyst yielded more favorable reaction intermediates that could be converted to methanol at a faster rate. This work develops unique MOFs-encapsulated bimetallic catalysts and illuminates the positive effect of confinement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c18398 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!