Controlled synthesis of one-dimensional materials at atomic-scale dimensions represents a milestone in nanotechnology, offering the potential to maximize atom utilization while enhancing catalytic performance. However, achieving structural stability and durability at such fine scales requires precise control over material structure and local chemical environment. Here, we introduce dimethylamine (DMA) as a small-molecule modifier, in contrast to conventional long-chain surfactants, to interact with surface Pt atoms. This approach facilitates the removal of surface Pt atoms bonded to nitrogen atoms in DMA during solubilization in water, effectively stripping the size of Pt nanowires down to sub-nanometer. The resulting Pt subnanometer nanowires (subNWs) feature a monoatomic-layer surface composed of disordered, bonding-unsaturated Pt atoms, and an interior crystalline core as narrow as 0.58 nm in diameter. These unique structural characteristics confer the Pt subNWs with an electrochemically active surface-area of 189 m ⋅ g during formic acid oxidation. Furthermore, the amorphous-like surface structure lowers the free energy of *OCOH intermediates and inhibits the formation of toxic byproducts CO, demonstrating exceptional electrocatalytic activity of 18.1 A ⋅ mg, surpassing most reported Pt-based electrocatalysts. Our work introduces a novel strategy for the controlled construction of nanowire-structures at sub-nanometer scale, effectively bridging the gap between ultrafine structural design and performance stability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202422199DOI Listing

Publication Analysis

Top Keywords

formic acid
8
surface atoms
8
sub-nanometer nanowires
4
nanowires disordered
4
disordered shells
4
shells highly
4
highly active
4
active elelctrocatalytic
4
elelctrocatalytic oxidation
4
oxidation formic
4

Similar Publications

Qualitative and Quantitative Analyses of 1-Aminocyclopropane-1-carboxylic Acid Concentrations in Plants Organs Using Phenyl Isothiocyanate Derivatization.

J Agric Food Chem

January 2025

Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China.

1-Aminocyclopropane-1-carboxylic acid (ACC) is a direct precursor of phytohormone ethylene. We used a phenyl isothiocyanate (PITC) derivatization modification method combined with spectrographic analysis to isolate and identify three products of the derivatization reactions of ACC and PITC. The MRM mode of UPLC-MS/MS was used to establish the analysis of 6-phenyl-5-thioxo-4,6-diazaspiro[2.

View Article and Find Full Text PDF

We propose an effective method for selectively extracting the valuable metals from the spent LiNiCoMnO cathode material using an oxalic acid-based deep eutectic solvent. Through regulation of the coordination environment, NiO, CoO, and MnO are stepwise separated and further applied in the electrochemical conversion of raw PET bottles to high-purity formic acid.

View Article and Find Full Text PDF

In recent years, formic acid (FA) has garnered attention as a compelling molecule for various chemical and everyday applications Additionally, with recent studies demonstrating direct FA generation through CO2 electrolysis, it can serve as a stable liquid hydrogen carrier. Nevertheless, FA-permeability via semi-permeable ion‑exchange membranes (FA-crossover) still constitutes a major issue in scalable polymer-electrolyte separated zero-gap electrolyzers, limiting the breakthrough of the technology to the larger-scale. Herein we present a holistic route towards understanding the mechanism of FA-crossover in zero-gap cells.

View Article and Find Full Text PDF

To evade legal controls, new psychoactive substances (NPS), which have been designed as substitutes for traditional and synthetic drugs, are gradually dominating the drug market. Synthetic cannabinoids (SCs), which account for the majority of NPS, are rapidly being derivatized; consequently, controlling increasing abuse by merely listing individual compounds is difficult. Therefore, China has included the entire SC category of SCs listed as legal controlled substances since July 1, 2021.

View Article and Find Full Text PDF

Thromboxane A (TXA), a prothrombotic factor that induces platelet aggregation and thrombosis, acts as a vasoconstrictor by activating TXA receptors (TP receptors). TXA is extremely unstable and metabolizes into three major metabolites: 2,3-dinor thromboxane B (2,3-dinor-TXB), 11-dehydro TXB(11-dh-TXB), and 11-dehydro-2,3-dinor TXB(11-dh-2,3-dinor-TXB). 8-Iso-prostaglandin F(8-iso-PGF), a prostaglandin-like compound widely considered the best biomarker of oxidative stress, can also activate TP receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!