Vibronic Conical Intersection Trajectory Signatures in Wave Packet Coherences.

J Phys Chem Lett

Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.

Published: December 2024

Conical intersections are ubiquitous in the energy landscape of chemical systems, drive photochemical reactivity, and are extremely challenging to observe spectroscopically. Using two-dimensional electronic spectroscopy, we observe the nonadiabatic dynamics in Wurster's Blue after excitation to the lowest two vibronic excited states. The excited populations relax ballistically through a conical intersection in 55 fs to the electronic ground state potential energy surface as the molecule undergoes an intramolecular electron transfer. While the kinetics are identical on both vibronic energy surfaces, we observe different patterns of coherent oscillations after traversing the conical intersection indicating distinct nonadiabatic relaxation pathways through the conical energetic funnel. These coherences are not created directly by the excitation pulses but are the result of the dynamical trajectories projecting differently on the conical intersection vibrational space. Our spectroscopic data offers a fresh perspective into the complex conical intersection topology and dynamics that emphasizes the critical involvement of the intersection space in dictating the dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c02979DOI Listing

Publication Analysis

Top Keywords

conical intersection
20
intersection
6
conical
6
vibronic conical
4
intersection trajectory
4
trajectory signatures
4
signatures wave
4
wave packet
4
packet coherences
4
coherences conical
4

Similar Publications

In this study, the radiative and nonradiative decay pathways from the first singlet excited states (denoted as S) of three bithiophene-fused isoquinolines were investigated by using the mixed-reference spin-flip time-dependent density functional theory approach. These isoquinolines, which are prepared via [2 + 2 + 2] cycloaddition reactions between three types of bithiophene-linked diynes and nitriles, exhibit different fluorescence quantum yields in response to the positions of their sulfur atoms. The decay processes, including the fluorescence emission and internal conversion, were considered.

View Article and Find Full Text PDF

Coupled cluster theory in the standard formulation is unable to correctly describe conical intersections among states of the same symmetry. This limitation has restricted the practical application of an otherwise highly accurate electronic structure model, particularly in nonadiabatic dynamics. Recently, the intersection problem among the excited states was fully characterized and resolved.

View Article and Find Full Text PDF

Minimum energy conical intersections can be used to rationalize photochemical processes. In this Letter, we examine an algorithm to locate these structures that does not require the evaluation of nonadiabatic coupling vectors, showing that it minimizes the energy on hypersurfaces that envelop the intersection seam. By constraining the states to be separated by a small non-zero energy difference, the algorithm ensures that numerical artifacts and convergence problems of coupled cluster theory at conical intersections are not encountered during the optimization.

View Article and Find Full Text PDF

Impact of Dipole Self-Energy on Cavity-Induced Nonadiabatic Dynamics.

J Chem Theory Comput

January 2025

Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen H-4002, Hungary.

The coupling of matter to the quantized electromagnetic field of a plasmonic or optical cavity can be harnessed to modify and control chemical and physical properties of molecules. In optical cavities, a term known as the dipole self-energy (DSE) appears in the Hamiltonian to ensure gauge invariance. The aim of this work is twofold.

View Article and Find Full Text PDF

ConspectusWhile traditional quantum chemical theories have long been central to research, they encounter limitations when applied to complex situations. Two of the most widely used quantum chemical approaches, Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT), perform well in cases with relatively weak electron correlation, such as the ground-state minima of closed-shell systems (Franck-Condon region). However, their applicability diminishes in more demanding scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!