Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chiral inorganic nanomaterials have attracted broad interest due to their intriguing chirality-dependent performances. However, there is a lack of experimental studies and atomic-level evidence on their growth mechanism. Herein, high-crystalline chiral tellurium nanowires were synthesized in an alkali solution by using tellurium oxide as an inorganic source and hydrazine hydrate as a reductant. The evolution of the nucleus and crystalline domains was manifested using high-resolution electron microscopy and electron diffraction, demonstrating a nonclassical growth path, that is, from monomers to nanowires of clusters and then nanocrystals. Furthermore, chiral inducers, d/l-penicillamine, were used at different stages to study their effects on the bias of two enantiomorphic structures with different chiral space groups. A similar nonclassical growth mechanism was also found in the synthesis of chiral terbium phosphate nanowires, demonstrating a common growth phenomenon in chiral inorganic nanomaterials. This work provides novel insights into the formation of chiral nanomaterials, benefiting the further controllable synthesis of various chiral nanomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673582 | PMC |
http://dx.doi.org/10.1021/jacs.4c13478 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!