Predicting and evaluating settlement of shallow foundation using machine learning approach.

Sci Prog

Institute of Training and International Cooperation (ITIC), University of Transport Technology, Thanh Xuan, Hanoi, Vietnam.

Published: January 2024

This study presents a novel approach to accurately predict the settlement of shallow foundations using advanced machine learning techniques while assessing the influence of key variables. Four machine learning models Gradient Boosting (GB), Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) are enhanced with Particle Swarm Optimization (PSO) for hyperparameter tuning, resulting in hybrid models GB-PSO, RF-PSO, SVM-PSO, and KNN-PSO. The experimental dataset comprises 189 samples, and model performance is rigorously evaluated through K-Fold Cross-Validation alongside R², RMSE, MAE, and MAPE metrics. The results indicate that PSO tuning does not consistently improve the prediction accuracy, with the original models, particularly GB and RF, outperforming their PSO-optimized counterparts. Sensitivity analysis via Shapley Additive Explanation (SHAP) highlights average Standard Penetration Test blow count (SPT) and footing width (B) as the most influential variables, with footing embedment ratio (D/B) and net applied pressure (q) also significantly impacting settlement predictions. The study offers a new Excel tool based on the GB model, facilitating practical applications for civil engineers, and providing a dependable, user-friendly tool to predict shallow foundation settlement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639041PMC
http://dx.doi.org/10.1177/00368504241302972DOI Listing

Publication Analysis

Top Keywords

machine learning
12
settlement shallow
8
shallow foundation
8
predicting evaluating
4
settlement
4
evaluating settlement
4
machine
4
foundation machine
4
learning approach
4
approach study
4

Similar Publications

Evaluating the impact of modeling choices on the performance of integrated genetic and clinical models.

Genet Med

December 2024

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN. Electronic address:

Purpose: The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results. We performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) with genetic data to understand which decisions may affect performance.

View Article and Find Full Text PDF

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.

View Article and Find Full Text PDF

This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!