Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202418359DOI Listing

Publication Analysis

Top Keywords

correction "zinc
4
"zinc single-atom-regulated
4
single-atom-regulated hard
4
hard carbons
4
carbons high-rate
4
high-rate low-temperature
4
low-temperature sodium-ion
4
sodium-ion batteries"
4
correction
1
single-atom-regulated
1

Similar Publications

A Scanning Photoelectron Microscopy (SPEM) experiment has been applied to ZnO:N films deposited by Atomic Layer Deposition (ALD) under O-rich conditions and post-growth annealed in oxygen at 800 °C. spatial resolution (130 nm) allows for probing the electronic structure of single column of growth. The samples were cleaved under ultra-high vacuum (UHV) conditions to open atomically clean cross-sectional areas for SPEM experiment.

View Article and Find Full Text PDF

Indirect Fortification of Traditional Nixtamalized Tortillas with Nixtamalized Corn Flours.

Foods

December 2024

Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro C.P. 76230, Querétaro, Mexico.

Background: This work focused on the study of the indirect fortification of Mexican tortillas made from nixtamalized masa (NM) with nixtamalized commercial corn flour (NCC-F) fortified with Zn, Fe, vitamins and folic acid.

Methods: The chemical proximate values (CPV), ash content, mineral composition by inductively coupled plasma, in vitro protein digestibility (PD), protein digestibility-corrected amino acid score (PDCAAS), the total starch content, the resistant starch (RS) content in nixtamalized corn tortillas (NC-T) and nixtamalized commercial corn flour tortillas (NCCF-T) and the contribution of tortillas prepared with a mixture of NM and NCC-F (75:25 and 50:50, NM:NCC-F) to the recommended dietary intake (RDI) of minerals and vitamins were determined.

Results: No significant differences ( < 0.

View Article and Find Full Text PDF

Globally, heavy metal (HM) soil pollution is becoming an increasingly serious concern. Heavy metals in soils pose significant environmental and health risks due to their persistence, toxicity, and potential for bioaccumulation. These metals often originate from anthropogenic activities such as industrial emissions, agricultural practices, and improper waste disposal.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple Sclerosis (MS) patients show significantly higher concentrations of heavy metals like arsenic, nickel, manganese, and zinc in their stool compared to healthy individuals, while levels of iron, lead, titanium, and tin are notably lower.
  • The study also reveals alterations in the gut microbiome of MS patients, with increased abundance of certain bacterial families indicative of potential changes associated with the disease.
  • The research highlights a novel approach by combining heavy metal measurement and gut microbiome analysis, suggesting new insights into the disease's pathogenesis and possible therapeutic strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!