Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multicomponent self-assembly has been explored to create novel metamaterials from nanoparticles of different sizes and compositions, but the assembly of nanoparticles with complementary shapes remains rare. Recent binary assemblies were mediated by DNA base pairing or induced by solvent evaporation. Here, we introduce depletion-induced self-assembly (DISA) as a novel approach to constructing tunable binary lattices. structural analysis in the real and reciprocal spaces demonstrates DISA of a binary mixture of octahedra and tetrahedra into extended supercrystals with 3̅ symmetry. The interparticle distance, adjustable by depletant concentration, offers a versatile method for assembling nanoparticles into ordered structures while they remain dispersed in a liquid phase. We show that DISA can control the packing fraction of such binary supercrystals between φ = 0.37 and φ = 0.66, much lower than dense packing in the dry state. These findings highlight DISA's potential for creating complex and highly ordered metamaterials with tailored properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c04923 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!