Objective: Ulcerative colitis (UC) treatment currently faces multiple challenges including adverse effects, prolonged therapy durations, and high costs. Baicalin (BA) has demonstrated anti-inflammatory benefits for inflammatory bowel disease, and the objective of this scholarly work is to address the challenges associated with the poor aqueous solubility and diminished oral bioavailability of the compound in question, thereby offering an innovative therapeutic approach for the management of ulcerative colitis.
Methods: We developed a baicalin-arginine complex (BA-Arg) by screening for suitable basic compounds and utilizing a freeze-drying method, resulting in an amorphous solid dispersion of BA.
Results: Our findings revealed that BA·Arg significantly enhances the intestinal absorption and transmembrane transport of BA without inducing toxicity in Caco-2 cells. Pharmacokinetic studies in healthy Wistar rats demonstrated significantly higher plasma concentrations of BA compared to free BA. In a mouse model induced by 3.5% dextran sodium sulfate, BA·Arg treatment markedly alleviated colitis symptoms as evidenced by reduced inflammatory cell infiltration, decreased lymphocyte aggregation in the colon, and better preservation of intestinal mucosa. This improved the overall anti-colitis efficacy of BA.
Conclusions: Overall, our study presents a simple, eco-friendly formulation process that enhances BA solubility without the need for organic solvents, offering a practical and sustainable solution for developing BA-based therapies for UC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-024-03804-0 | DOI Listing |
Nanomaterials (Basel)
December 2024
Institute for Energy and Materials Processes-Reactive Fluids, University of Duisburg-Essen, 47057 Duisburg, Germany.
Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, and a wide range of temperature functionality. NASICON-type solid electrolytes are an exciting candidate within ceramic electrolytes due to their high ionic conductivity and low moisture sensitivity, making them a prime candidate for pure oxidic and hybrid ceramic-in-polymer composite electrolytes. Here, we report on producing pure and Y-doped Lithium Aluminum Titanium Phosphate (LATP) nanoparticles by spray-flame synthesis.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Peter-Grünberg-Institut PGI-1, Forschungszentrum Jülich, D-52425 Jülich, Germany.
The importance of the structure-function relationship in molecular biology was confirmed dramatically by the recent award of the 2024 Nobel Prize in Chemistry 'for computational protein design' and 'for protein structure prediction'. The relationship is also important in chemistry and condensed matter physics, and we survey here structural concepts that have been developed over the past century, particularly in chemistry. As an example we take structural phase transitions in phase-change materials (PCM), which can be switched rapidly and reversibly between amorphous and crystalline states.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
Polyethylene terephthalate (PET) has been widely used in plastic products, leading to massive PET waste accumulation in ecosystems worldwide. Efforts to find greener processes for dealing with post-consumer PET waste led to the discovery of PET-degrading enzymes such as PETase (PETase). studies have provided valuable contributions to this field, shedding light on the catalytic mechanisms and substrate interactions in many PET hydrolase enzymes.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!