A FRET Autophagy Imaging Platform by Macrocyclic Amphiphile.

Angew Chem Int Ed Engl

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China.

Published: December 2024

Autophagy is a ubiquitous process of organelle interaction in eukaryotic cells, in which various organelles or proteins are recycled and operated through the autophagy pathway to ensure nutrient and energy homeostasis. Although numerous fluorescent probes have been developed to image autophagy, these environment-responsive probes suffer from inherent deficiencies such as inaccuracy and limited versatility. Here, we present a modular macrocyclic amphiphile Förster Resonance Energy Transfer (FRET) platform (SC6A12C/NCM, SN), constructed through the amphiphilic assembly of sulfonatocalix[6]arene (SC6A12C) with N-cetylmorpholine (NCM) for lysosome targeting. The hydrophobic fluorophore BPEA (FRET donor) was entrapped within the inner hydrophobic phase and showed strong fluorescence emission. Attributed to the broad-spectrum encapsulation of SC6A12C, three commercially available organelle probes (Mito-Tracker Red, ER Tracker Red, and RhoNox-1) were selected as SC6A12C guests (FRET acceptors). During autophagy process, the formation of intracellular host-guest complexes leads to strong FRET signal, allowing us to visualize the fusion of mitochondria, endoplasmic reticulum, and Golgi apparatus with lysosomes, respectively. This study provides a versatile and accessible platform for imaging organelle autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202420793DOI Listing

Publication Analysis

Top Keywords

macrocyclic amphiphile
8
fret
5
autophagy
5
fret autophagy
4
autophagy imaging
4
imaging platform
4
platform macrocyclic
4
amphiphile autophagy
4
autophagy ubiquitous
4
ubiquitous process
4

Similar Publications

A FRET Autophagy Imaging Platform by Macrocyclic Amphiphile.

Angew Chem Int Ed Engl

December 2024

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China.

Autophagy is a ubiquitous process of organelle interaction in eukaryotic cells, in which various organelles or proteins are recycled and operated through the autophagy pathway to ensure nutrient and energy homeostasis. Although numerous fluorescent probes have been developed to image autophagy, these environment-responsive probes suffer from inherent deficiencies such as inaccuracy and limited versatility. Here, we present a modular macrocyclic amphiphile Förster Resonance Energy Transfer (FRET) platform (SC6A12C/NCM, SN), constructed through the amphiphilic assembly of sulfonatocalix[6]arene (SC6A12C) with N-cetylmorpholine (NCM) for lysosome targeting.

View Article and Find Full Text PDF

Broad-Spectrum Detoxification of Snake Venoms With Supramolecular Materials Integrated via Molecular Recognition and Coassembly.

Adv Healthc Mater

December 2024

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P. R. China.

Article Synopsis
  • Snakebite is a serious medical issue in tropical and subtropical areas, requiring specific antivenoms to combat various snake venoms, which is both clinically and financially challenging.!* -
  • A new broad-spectrum antidote was developed using a combination of coassembled compounds to neutralize four toxic snake venom types, improving the effectiveness of treatment.!* -
  • The antidote demonstrated successful toxin neutralization in trials, enhancing survival rates of mice exposed to poisonous snake venom, highlighting the potential for broader applications in snakebite treatment.!*
View Article and Find Full Text PDF

Control over the orientation of polycyclic aromatic dyes in thin films is paramount to tailoring their optical, electronic, and mechanical properties. Their supramolecular assembly in films is tuned here by converting the macrocyclic dyes to large amphiphiles. Two octaalkythio-substituted tetraazaporphyrins (TAPs) with one 5-carboxypentyl and one pentyl or dodecyl chain per pyrrole ring were synthesized as statistical mixtures of four regioisomers.

View Article and Find Full Text PDF
Article Synopsis
  • * The study introduces third generation PAMAM dendrimers with a thiacalixarene core in three different conformations, found to effectively bind and compact DNA while showing improved binding efficiency with generations.
  • * The findings suggest that the structural design of these dendrimers can lower hemotoxicity and potentially simplify the development of new, cost-effective drug delivery systems in nanomedicine.
View Article and Find Full Text PDF

Macrocycle-based self-assembled amphiphiles for co-delivery of therapeutic combinations to tumor.

Colloids Surf B Biointerfaces

February 2025

State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China. Electronic address:

For tumor treatment, the efficiency of single chemotherapeutic agent is generally limited and the traditional combination chemotherapies frequently result in the aggravation of side effects. Herein, an amphiphilic pillararene-based self-assembled nanoparticle (APSN) composed of hydrazide-pillar[5]arene (HP5A-6C) that achieve effective co-delivery of therapeutic combinations was reported. Through integrating multitudinous macrocyclic cavities into a single nanoparticle, the APSN could co-load two antitumor drugs, cisplatin (CP) and nitrogen mustard (NM) via host-guest interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!