Effective enhancement of ramie anaerobic continuous flow degumming by chitosan and its microbiological mechanism.

Bioresour Technol

College of Environmental Science and Engineering, Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Published: December 2024

Based on a novel bio-degumming system, the effect of chitosan on the degumming effect of ramie was investigated. The degumming effect indexes before and after the addition of chitosan were assessed, and the enzyme activities (pectinase, xylanase, ligninase and cellulase) were detected. Meanwhile changes in microbial community structure were evaluated. Furthermore, the electron-donating effect of chitosan and cellulose was further simulated by Fukui function. Degumming effect indexes showed the addition of chitosan could effectively increase the breaking strength of degummed ramie (from 6.04 to 6.59 cN/dtex), reduce the fineness (from 10.06 to 8.039 dtex), so that more gums were removed (the residual gum ratio reduced from 16.55 % to 12.09 %) and more cellulose was retained in the degummed ramie (cellulose content increased from 78.01 % to 80.96 %). Enzyme activity measurements revealed that the addition of chitosan increased the activity of degumming enzymes (pectinase, xylanase and ligninase), while decreased cellulase activity. The addition of chitosan induced changes of the community structure, with an increase of degumming microorganisms and a decrease of cellulose-degrading microorganisms. According to Fukui function, chitosan has a stronger electron donating ability than cellulose, which might be one important reason for the changes in enzyme activities and community structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131969DOI Listing

Publication Analysis

Top Keywords

addition chitosan
16
chitosan
8
degumming indexes
8
indexes addition
8
enzyme activities
8
pectinase xylanase
8
xylanase ligninase
8
community structure
8
fukui function
8
degummed ramie
8

Similar Publications

Cryogels were fabricated by combining polyvinyl alcohol (PVA) and chitosan of varying molecular weights (Mw). In this study, the effects of chitosan Mw, types of boron-containing molecules on network formation, and boron release rate in resulted cryogels were investigated. The PVA/chitosan blend maintained a constant 4.

View Article and Find Full Text PDF

Genipin crosslinked sodium caseinate-chitosan oligosaccharide nanoparticles for optimizing β-carotene stability and bioavailability.

Int J Biol Macromol

January 2025

Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:

In this study, genipin served as crosslinker to combine sodium caseinate (SC) and chitosan oligosaccharide (COS), aiming to improve the physicochemical properties and encapsulation efficiency of SC in delivering hydrophobic nutritional factors. The genipin crosslinked complex of SC and COS (GSCC) was characterized by circular dichroism spectrum and infrared spectrum analyses. Nanoparticles produced from GSCC (GSCCNP) exhibited a superior hydrophilicity compared to those derived from SC (SCNP).

View Article and Find Full Text PDF

Improved activity and stability of cellulase by immobilization on FeO nanoparticles functionalized with Reactive Red 120.

Int J Biol Macromol

January 2025

Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran. Electronic address:

Cellulase is extensively used in the biorefinery of cellulosic materials to fermentable sugars in bioethanol production. Application of cellulase in the free form has disadvantages in enzyme wastage and low stability. The results of the present work showed these drawbacks can be solved by cellulase immobilization on functionalized FeO magnetic nanoparticles (MNPs) with reactive red 120 (RR120) as the affinity ligands.

View Article and Find Full Text PDF

In this study, the effect of freeze-thaw (F-T) processes on the mechanical and water absorption performance of citrate cross-linked chitosan/poly(vinyl alcohol) hydrogel pads was evaluated. An excellent cross-linking of 4 % (w/w) citrate was indicated by enhanced peak strength in Fourier-transform infrared spectroscopy and X-ray diffraction patterns, which was applied to the subsequent F-T process. The results in the deswelling rate, water contact angle, and relaxation time of samples exhibited a tendency to decrease and then increase with increasing F-T cycles, reaching a minimum of 0.

View Article and Find Full Text PDF

Multifunctional layer-by-layer smart film with betalains and selenium nanoparticles for intelligent meat freshness monitoring and preservation.

Food Chem

January 2025

Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China. Electronic address:

Multifunctional pH-responsive films were fabricated via layer-by-layer deposition of gelatin, chitosan, and carboxymethyl cellulose (CMC), incorporating selenium nanoparticles (SeNPs) and beetroot extract (BTE), to monitor and preserve beef freshness. SeNPs were synthesized and characterized via various techniques. BTE exhibited promising functional properties, and films demonstrated a significant color transition from red to yellow across pH 2-14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!