The intensive use of oil and its derivatives is related to a greater frequency of accidents involving the release of pollutants that cause harmful effects on ecosystems. Actinobacteria are cosmopolitan and saprophytic microorganisms of great commercial interest, but because they are predominantly found in soil, most research into the products of this phylum's metabolism has focused on this habitat. Marine actinobacteria exhibit unique metabolic characteristics in response to extreme conditions in their habitat, which distinguishes them from terrestrial actinobacteria. This systematic review aims to describe cultivable hydrocarbonoclastic marine actinobacteria, analyze their biodegradation rates, as well as discuss their respective potential for application in bioremediation techniques and their limitations. Twenty-one actinobacteria were found to be capable of degrading one or more hydrocarbons derived from petroleum. The majority of these bacteria belonged to the genera Rhodococcus, Gordonia, Pseudonocardia, Isoptericola, Microbacterium, Citricoccus, Kocuria, Brevibacterium, and Cellulosimicrobium. The highest degradation rate was obtained by the species R. ruber, which degraded 100 % of fluorene at a concentration of 100 mg/L. On the other hand, the species Streptomyces gougerotti and Micromonospora matsumotoense were able to degrade polyethylene and use the carbon derived from it to produce polylactic acid (PLA), which represents an excellent candidate for making safely degradable bioplastics, with a view to recycling and replacing conventional petroleum-based plastics. An approach that integrates physicochemical and biological methods, and optimized growth conditions can lead to greater success in decontaminating environments. Despite the number of bacteria found in the research, this number may be significantly higher. This review provides valuable information to support further studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.125509 | DOI Listing |
Mar Drugs
December 2024
Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
This study focused on and conducted stress experiments at salinity levels of 20‱ and 40‱. Intestinal histological changes and the structural characteristics of the intestinal flora of under salinity stress were analyzed. The results show that acute salinity stress inflicts varying degrees of damage to the intestinal tissues of .
View Article and Find Full Text PDFMar Drugs
December 2024
Jeju Bio Research Center, Korea Institute of Ocean Science & Technology, Jeju-si 63349, Republic of Korea.
In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6.
View Article and Find Full Text PDFMar Drugs
November 2024
BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea.
Melanoma is an aggressive skin cancer with a high risk of cancer-related deaths, and inducing apoptosis in melanoma cells is a promising therapeutic strategy. This study investigates the anti-tumor potential of a novel lucknolide derivative LA-UC as a therapeutic candidate for melanoma. Lucknolide A (LA), a tricyclic ketal-lactone metabolite isolated from marine-derived sp.
View Article and Find Full Text PDFCurr Med Chem
December 2024
Division of Microbiology, Entomology Research Institute, Loyola College, Chennai-600034, Tamil Nadu, India.
Microbes in general, actinomycetes in particular, produce a wide range of antibiotics with various biological activities such as anticancer, antimicrobial, anti-inflammatory, antituberculosis and enzyme inhibition. Actinomycetes are filamentous gram-positive bacteria found in both terrestrial and marine environments. Currently, antibiotics such as Rifamycin, Tetracycline, Kanamycin, Neomycin, Streptomycin and Clavulanic acid derived from actinobacteria are highly useful in the medical field.
View Article and Find Full Text PDFMicrob Biotechnol
December 2024
CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
Actinomycetota are unrivalled producers of bioactive natural products, with strains living in association with macroalgae representing a prolific-yet largely unexplored-source of specialised chemicals. In this work, we have investigated the bioactive potential of Actinomycetota from macroalgae through culture-dependent and -independent approaches. A bioprospecting pipeline was applied to a collection of 380 actinobacterial strains, recovered from two macroalgae species collected in the Portuguese northern shore-Codium tomentosum and Chondrus crispus-in order to explore their ability to produce antibacterial, antifungal, anticancer and lipid-reducing compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!