Enhanced 3D printing performance of soybean protein isolate nanoparticle-based O/W Pickering emulsion gels by incorporating different polysaccharides.

Int J Biol Macromol

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China. Electronic address:

Published: December 2024

This work investigated the feasibility of employing soybean protein isolate nanoparticles (SPINPs) as emulsifiers and polysaccharides with different charge properties as thickeners to develop oil-in-water (O/W) Pickering emulsion gels 3D printing inks. The impact of non-covalent interactions between SPINPs and various polysaccharides on the microstructure, rheological properties, and 3D printability of emulsion gels was investigated at pH 3 and pH 7, respectively. Results showed that Locust bean gum (LBG) and Konjac gum (KG) stabilized emulsion gels mainly by increasing the viscosity of the aqueous phase. Chitosan (CS) and xanthan gum (XG) improved the system's viscosity while combining with SPINPs via electrostatic interactions. Small amplitude oscillatory shear and large amplitude oscillatory shear test results showed the highest recovery rate (97.45 %) and gel strength of 7-XG, exhibiting good potential for 3D printing. The Lissajous curves revealed the weakest gel structure and larger dimensional printing deviation (27.57 %) of 3-XG. The 3D-printed products of LBG and KG emulsion gels demonstrated smooth and slightly flawed surface texture. The print deformation rate of CS emulsion gels was <5.5 %, which was most suitable for developing 3D printing inks. This study offers valuable insights for creating and designing protein-polysaccharide-based 3D printing inks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138637DOI Listing

Publication Analysis

Top Keywords

emulsion gels
24
soybean protein
8
protein isolate
8
o/w pickering
8
pickering emulsion
8
amplitude oscillatory
8
oscillatory shear
8
emulsion
6
gels
6
enhanced printing
4

Similar Publications

This study aimed to prepare ultrasonically modified peanut protein-guar gum composite emulsion gels for 3D printing. The composition of the composite emulsion gels was determined in single-factor and orthogonal experiments. The results revealed that the optimal composite emulsion gels consisted of 6% peanut protein, 50% oil and 0.

View Article and Find Full Text PDF

Natural deep eutectic solvents (NaDES) were employed for the extraction of bilberry and green tea leaves. This study explored the incorporation of these NaDES extracts into various carrier systems: hydrogels, emulsions, and emulgels stabilized with hydroxyethyl cellulose or xanthan gum. The results demonstrated that, when combined with synthetic UV filters, the NaDES extracts significantly enhanced the SPF and improved the antioxidant properties of the formulation.

View Article and Find Full Text PDF

Oleogels developed through the direct-dispersion method offer an innovative, scalable, and efficient alternative to traditional fats in sausage production, providing a solution to health concerns associated with the high saturated fat content of conventional formulations. By closely mimicking the texture, stability, and mouthfeel of animal fats, these oleogels provide a novel approach to improving the nutritional profile of sausages while maintaining desirable sensory characteristics. This review critically evaluates cutting-edge research on oleogels, emphasizing innovations in their ability to enhance emulsion stability, increase cooking yield, reduce processing weight loss, and optimize fatty acid composition by reducing overall fat and saturated fat levels.

View Article and Find Full Text PDF

Ultrasound-mediated soybean-egg white protein acid-induced emulsion gels: A multi-design approach integrating techno-functional properties, digestibility, and nutritional value.

Food Chem

December 2024

Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China. Electronic address:

This study investigated the effects of formulation and ultrasound on the processing properties and nutrient digestion of soy protein isolate (SPI)-egg white protein (EWP) emulsion gels. The incorporation of EWP significantly improved the texture properties and freeze-thaw stability through disulfide bonds and homogeneous networks in comparison to SPI emulsion gels. However, swelling ratio of emulsion gels at SPI:EWP ratios of 3:1 and 2:1 decreased due to disruption of SPI network continuity.

View Article and Find Full Text PDF

Synergistic stabilization of oil-in-water emulsion gels by pea protein isolate and cellulose nanocrystals: Effects of pH and application to 3D printing.

Food Chem

December 2024

State Key Laboratory of Food Science and Resource, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China. Electronic address:

In this study, pea protein isolate (PPI) and cellulose nanocrystals (CNC) were used to prepare oil-in-water emulsions, and the effects of pH and the oil content on the properties of the emulsions were investigated. The microstructural analysis revealed that PPI and CNC formed complexes by electrostatic attraction at pH 3.0 and 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!