Amino-functionalized cellulose beads supporting laccase: A dual-function catalyst for simultaneous adsorption and enzymatic conversion of tetracycline.

Int J Biol Macromol

School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China. Electronic address:

Published: December 2024

In this study, a novel cellulose-derived support of amino-functionalized cellulose beads (ACBs) for laccase immobilization was successfully developed using cellulose beads (CBs) and polyethyleneimine by glutaraldehyde crosslinking reaction. The covalent immobilization of laccase on ACBs was achieved via a Schiff base reaction. The obtained enzyme catalysts (Lac-ACBs) were applied for simultaneous adsorption and enzymatic conversion of tetracycline (TC) from water. The structure and properties of all samples were characterized by SEM-EDS, FT-IR, XRD, BET, and EA. Furthermore, the Lac-ACBs exhibited excellent stability and reusability: after 15 cycles of catalysis, they maintained 72 % of their original activity. The Lac-ACBs were applied for the removal of TC from water with simultaneous adsorption and enzymatic conversion, achieving an 82 % removal efficiency. The enzymatic conversion products were examined to investigate the mechanism of the conversion. The data illustrated that oxidation, dehydrogenation, and demethylation are major reactions in that process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138641DOI Listing

Publication Analysis

Top Keywords

enzymatic conversion
16
cellulose beads
12
simultaneous adsorption
12
adsorption enzymatic
12
amino-functionalized cellulose
8
conversion tetracycline
8
lac-acbs applied
8
conversion
5
beads supporting
4
supporting laccase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!