A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrasensitive and label-free electrochemical immunosensor using gold nanoparticles deposited on a carbon electrode for the quantification of osteopontin: A serum-based oncomarker. | LitMetric

Early detection of cancer biomarkers is crucial for effective diagnosis and treatment, prompting the development of an ultrasensitive label-free electrochemical immunosensor. In this study, we fabricated an ultrasensitive label-free electrochemical immunosensor using a glassy carbon electrode/gold nanoparticles (GCE/AuNPs) modification for quantification of osteopontin (OPN), an oncomarker. The surface features of the modified electrodes were confirmed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electrochemical behavior of the bare and modified electrode was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The quantification of the OPN antigen was achieved through the differential pulse voltammetry (DPV) method. The fabricated immunosensor demonstrated excellent detection capabilities in both commercial serum samples and phosphate-buffered saline (PBS). It showed sensitive quantification of OPN in the range of 0.001 to 1000 ng/mL with a limit of detection (LOD) of 0.005 ng/mL in PBS. Furthermore, the immunosensor retained approximately 89.3 % of its initial signal after storage for up to 8 weeks. The results were validated by detecting OPN-spiked commercial serum samples with a satisfactory recovery rate. The potential of this immunosensor makes it suitable for assaying OPN in real cancer patient's serum samples with minimal interference from complex sample matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138640DOI Listing

Publication Analysis

Top Keywords

ultrasensitive label-free
12
label-free electrochemical
12
electrochemical immunosensor
12
serum samples
12
quantification osteopontin
8
quantification opn
8
commercial serum
8
immunosensor
6
electrochemical
5
immunosensor gold
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!