Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cortical networks are capable of unsupervised learning and spontaneous replay of complex temporal sequences. Endowing artificial spiking neural networks with similar learning abilities remains a challenge. In particular, it is unresolved how different plasticity rules can contribute to both learning and the maintenance of network stability during learning. Here we introduce a biologically inspired form of GABA-Modulated Spike Timing-Dependent Plasticity (GMS) and demonstrate its ability to permit stable learning of complex temporal sequences including natural language in recurrent spiking neural networks. Motivated by biological findings, GMS utilizes the momentary level of inhibition onto excitatory cells to adjust both the magnitude and sign of Spike Timing-Dependent Plasticity (STDP) of connections between excitatory cells. In particular, high levels of inhibition in the network cause depression of excitatory-to-excitatory connections. We demonstrate the effectiveness of this mechanism during several sequence learning experiments with character- and token-based text inputs as well as visual input sequences. We show that GMS maintains stability during learning and spontaneous replay and permits the network to form a clustered hierarchical representation of its input sequences. Overall, we provide a biologically inspired model of unsupervised learning of complex sequences in recurrent spiking neural networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.106985 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!