A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stabilizing sequence learning in stochastic spiking networks with GABA-Modulated STDP. | LitMetric

Cortical networks are capable of unsupervised learning and spontaneous replay of complex temporal sequences. Endowing artificial spiking neural networks with similar learning abilities remains a challenge. In particular, it is unresolved how different plasticity rules can contribute to both learning and the maintenance of network stability during learning. Here we introduce a biologically inspired form of GABA-Modulated Spike Timing-Dependent Plasticity (GMS) and demonstrate its ability to permit stable learning of complex temporal sequences including natural language in recurrent spiking neural networks. Motivated by biological findings, GMS utilizes the momentary level of inhibition onto excitatory cells to adjust both the magnitude and sign of Spike Timing-Dependent Plasticity (STDP) of connections between excitatory cells. In particular, high levels of inhibition in the network cause depression of excitatory-to-excitatory connections. We demonstrate the effectiveness of this mechanism during several sequence learning experiments with character- and token-based text inputs as well as visual input sequences. We show that GMS maintains stability during learning and spontaneous replay and permits the network to form a clustered hierarchical representation of its input sequences. Overall, we provide a biologically inspired model of unsupervised learning of complex sequences in recurrent spiking neural networks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106985DOI Listing

Publication Analysis

Top Keywords

spiking neural
12
neural networks
12
learning
9
sequence learning
8
unsupervised learning
8
learning spontaneous
8
spontaneous replay
8
complex temporal
8
temporal sequences
8
stability learning
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!