PIEZO1-mediated calcium influx transiently alters nuclear mechanical properties via actin remodeling in chondrocytes.

Biochem Biophys Res Commun

Laboratory of Cell Biology, Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-7207, Tübingen, Germany.

Published: January 2025

Mechanosensation allows cells to generate intracellular signals in response to mechanical cues from their environment. Previous research has demonstrated that mechanical stress can alter the mechanical properties of the nucleus, affecting gene transcription, chromatin methylation, and nuclear mechanoprotection during mechanical loading. PIEZO1, a mechanically gated Ca ion channel, has been shown to be important in sensing mechanical stress, however its signal transduction pathway is not thoroughly understood. In this study, we used primary porcine chondrocytes to determine whether PIEZO1 activation and subsequent Ca influx altered nuclear mechanical properties, and whether these effects involved the actin cytoskeleton. We discovered that activating PIEZO1 with Yoda1, a specific small-molecule agonist, induces transient nuclear softening-a previously identified mechanoprotective response. This PIEZO1-mediated nuclear softening is abolished by inhibiting actin cytoskeleton remodeling with Latrunculin A or by removing extracellular Ca. Notably, PIEZO1-mediated nuclear softening did not lead to significant changes in gene expression or heterochromatin methylation. Our findings demonstrate that actin cytoskeleton remodeling following Ca influx facilitates PIEZO1 signal transduction to the nucleus but does not induce lasting gene expression changes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.151135DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
actin cytoskeleton
12
nuclear mechanical
8
mechanical stress
8
signal transduction
8
piezo1-mediated nuclear
8
nuclear softening
8
cytoskeleton remodeling
8
gene expression
8
mechanical
7

Similar Publications

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS/WS. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations.

View Article and Find Full Text PDF

Background: The paratenon has been shown to promote Achilles tendon healing, but the evidence supporting the role of paratenon protection technique in Achilles tendon repair is sparse. We retrospectively assessed the results of a paratenon-sparing repair technique vs an open giftbox repair of Achilles tendon ruptures.

Methods: Patients with Achilles tendon rupture who underwent surgical treatment at our hospital between January 2015 and August 2021 were retrospectively reviewed.

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Measurement and Analysis of Optical Transmission Characteristics of the Human Skull.

J Biophotonics

January 2025

Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!