Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In present findings, a simple pyrolysis technique was applied to decorate S and N doped graphene with RuS2-CoO nanoparticles synthesizing a heterostructured nanocomposite RuS2-CoO@SNG. XPS results demonstrate the elemental composition of these nanomaterials with the hint of metal-metal charge transfer phenomenon likely due to heterostructure composition. These modifications led to a significant active surface area resulting in elevated electrocatalytic performance. In comparison to benchmark Pt/C at -60 mV in 1 M KOH, hydrogen evolution reaction (HER) reached at current density around 10 mA cm-2 at -90 mV overpotential. The stability test displayed excellent results with a decrease of 2 mV in overpotential at current density of 10 mA cm-2. Results indicate that such heterostructured nanocomposites can be used as an effective catalyst for HER.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637258 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311885 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!