Li-ion transport in two-dimensional nanofluidic membranes.

Nano Converg

Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea.

Published: December 2024

The growing demand for lithium, driven by its critical role in lithium-ion batteries (LIBs) and other applications, has intensified the need for efficient extraction methods from aqua-based resources such as seawater. Among various approaches, 2D channel membranes have emerged as promising candidates due to their tunable ion selectivity and scalability. While significant progress has been made in achieving high Li/Mg selectivity, enhancing Li ion selectivity over Na ion, the dominant monovalent cation in seawater, remains a challenge due to their similar properties. This review provides a comprehensive analysis of the fundamental mechanisms underlying Li selectivity in 2D channel membranes, focusing on the dehydration and diffusion processes that dictate ion transport. Inspired by the principles of biological ion channels, we identify key factors-channel size, surface charge, and binding sites-that influence energy barriers and shape the interplay between dehydration and diffusion. We highlight recent progress in leveraging these factors to enhance Li/Na selectivity and address the challenges posed by counteracting effects in ion transport. While substantial advancements have been made, the lack of comprehensive principles guiding the interplay of these variables across permeation steps represents a key obstacle to optimizing Li/Na selectivity. Nonetheless, with their inherent chemical stability and fabrication scalability, 2D channel membranes offer significant potential for lithium extraction if these challenges can be addressed. This review provides insights into the current state of 2D channel membrane technologies and outlines future directions for achieving enhanced Li ion selectivity, particularly in seawater applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638449PMC
http://dx.doi.org/10.1186/s40580-024-00465-yDOI Listing

Publication Analysis

Top Keywords

channel membranes
12
ion selectivity
12
dehydration diffusion
8
ion transport
8
li/na selectivity
8
ion
7
selectivity
7
li-ion transport
4
transport two-dimensional
4
two-dimensional nanofluidic
4

Similar Publications

In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.

View Article and Find Full Text PDF

Functionalized polymer membrane electrodes based multichannel sensor is used as an electronic tongue to monitor the drinking water (DW) quality simply by measuring the surface electric potential with respect to Ag/AgCl reference electrode in 1 mM aqueous KCl. Changes of minute concentration of dissolved minerals greatly affected the surface potential of the sensor. The three-channel sensor device (electronic tongue) is made by using three different functionalized polymer membrane electrodes, namely, phosphorylated hexadecyl trimethyl ammonium chloride modified polyvinyl alcohol-polyacrylic acid membrane; phosphorylated and crosslinked polyvinyl--ethylene membrane; phosphorylated and crosslinked polyvinyl alcohol membrane, as working electrodes and a Ag/AgCl reference electrode.

View Article and Find Full Text PDF

Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.

View Article and Find Full Text PDF

TGR5 attenuates DOCA-salt hypertension through regulating histone H3K4 methylation of ENaC in the kidney.

Metabolism

January 2025

Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. Electronic address:

Epithelial sodium channel (ENaC), located in the collecting duct principal cells of the kidney, is responsible for the reabsorption of sodium and plays a critical role in the regulation of extracellular fluid volume and consequently blood pressure. The G protein-coupled bile acid receptor (TGR5) is a membrane receptor mediating effects of bile acid and is implicated in kidney diseases. The current study aims to investigate whether TGR5 activation in the kidney regulated ENaC expression and potential mechanism.

View Article and Find Full Text PDF

A biophysical basis for the spreading behavior and limited diffusion of Xist.

Cell

January 2025

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. Electronic address:

Xist RNA initiates X inactivation as it spreads in cis across the chromosome. Here, we reveal a biophysical basis for its cis-limited diffusion. Xist RNA and HNRNPK together drive a liquid-liquid phase separation (LLPS) that encapsulates the chromosome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!