AI Article Synopsis

  • Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, with recent connections made between variants in the SPTLC1 gene and both hereditary neuropathy and juvenile ALS.
  • The study analyzed genetic data from patients with familial and sporadic ALS to assess the presence and effects of SPTLC1 variants, using techniques like RT-PCR and ddPCR to evaluate splicing and genetic mosaicism.
  • A specific SPTLC1 variant was found in a 21-year-old female patient with juvenile ALS, inherited from her asymptomatic father who exhibited a mosaic form of the variant, highlighting the need for further exploration of the clinical implications of such mosaicism.

Article Abstract

Introduction: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. Pathogenic variants in SPTLC1, encoding a subunit of serine palmitoyltransferase, cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), and have recently been associated with juvenile ALS. SPTLC1 variants associated with ALS cause elevated levels of sphinganines and ceramides. Reports on ALS associated with SPTLC1 remain limited. This study aimed to investigate the frequency of SPTLC1 variants in ALS and relevant clinical characteristics.

Methods: We analyzed whole-exome and whole-genome sequence data from 40 probands with familial ALS and 413 patients with sporadic ALS without previously identified causative variants. Reverse transcription polymerase chain reaction (RT-PCR) analysis and droplet digital PCR (ddPCR) were used to assess splicing and mosaicism, respectively. Plasma sphingolipid levels were quantified to analyze biochemical consequences.

Results: The heterozygous c.58G>A, p.Ala20Thr variant was identified in a 21-year-old Japanese female patient presenting with symmetric weakness which slowly progressed over 15 years. RT-PCR analysis showed no splice defects. Plasma sphingolipid levels in the patient were significantly increased compared to her asymptomatic parents. ddPCR revealed that the asymptomatic father harbored a mosaic variant with 17% relative mutant allele abundance in peripheral blood leukocytes.

Conclusions: We identified a pathogenic c.58G>A, p.Ala20Thr SPTLC1 variant in a patient with juvenile ALS, likely inherited from an asymptomatic parent with mosaicism. Lipid analysis results are consistent with previous findings on SPTLC1-associated ALS. Further studies are necessary to determine the clinical effect of mosaic variants of SPTLC1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638311PMC
http://dx.doi.org/10.1007/s00415-024-12776-5DOI Listing

Publication Analysis

Top Keywords

als
9
amyotrophic lateral
8
lateral sclerosis
8
variants sptlc1
8
juvenile als
8
sptlc1 variants
8
rt-pcr analysis
8
plasma sphingolipid
8
sphingolipid levels
8
c58g>a pala20thr
8

Similar Publications

Magnetic resonance imaging (MRI) is a cornerstone of non-invasive diagnostics and treatment monitoring, particularly for diseases of the central nervous system. Although 1.5- and 3 Tesla (T) field strengths remain the clinical standard, the advent of 7 T MRI represents a transformative step forward, offering superior spatial resolution, contrast, and sensitivity for visualizing neuroanatomy, metabolism, and function.

View Article and Find Full Text PDF

SEMdag: Fast learning of Directed Acyclic Graphs via node or layer ordering.

PLoS One

January 2025

Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.

A Directed Acyclic Graph (DAG) offers an easy approach to define causal structures among gathered nodes: causal linkages are represented by arrows between the variables, leading from cause to effect. Recently, industry and academics have paid close attention to DAG structure learning from observable data, and many techniques have been put out to address the problem. We provide a two-step approach, named SEMdag(), that can be used to quickly learn high-dimensional linear SEMs.

View Article and Find Full Text PDF

Background: With the approval of disease-modifying treatments for 5q-spinal muscular atrophy (SMA), there is an increasing need for biomarkers for disease course and therapeutic response monitoring. Radially sampled Averaged Magnetization Inversion Recovery Acquisitions (rAMIRA) MR-imaging enables spinal cord (SC) gray matter (GM) delineation and quantification in vivo. This study aims to assess SC GM atrophy in patients with 5q-SMA and its associations with clinical disability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!