Electric vehicles (EVs) are on the brink of revolutionizing transportation, but the current lithium-ion batteries (LIBs) used in them have significant limitations in terms of fast-charging capabilities and energy density. This feature article begins by examining the key challenges of using graphite for fast charging and silicon for achieving high energy density in LIBs. Firstly, it explores various design strategies employed by researchers worldwide to improve the fast-charging performance of graphite, such as surface coatings, morphological modifications, and binder design. However, instead of modifying graphite, a more effective approach is to use materials with inherently beneficial properties-specifically, hard carbons. The article then reviews the design strategies for increasing capacity while maintaining structural stability in silicon-based anodes, including encapsulated structures and embedded matrices. Overall, this article provides a comprehensive overview of diverse approaches aimed at advancing both fast-charging capability and energy density in LIBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc04776a | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.
View Article and Find Full Text PDFJ Photochem Photobiol B
December 2024
Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America; Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America.
Introduction: Fungal keratitis is a leading cause of corneal blindness, with current antifungal treatments having limited efficacy. One promising treatment modality is Rose Bengal (RB) photodynamic antimicrobial therapy (PDAT) that has shown mixed success against fungal keratitis. Therefore, there is a need to explore the antimicrobial efficacy of other green-light activated photosensitizers that have deep penetration in the cornea to combat the deep fungal infections, such as Erythrosin B (EB) and Eosin Y (EY).
View Article and Find Full Text PDFSci Rep
January 2025
School of Information Technology, Jiangsu Open University, Nanjing, 210017, China.
Because of its dimensional characteristics, two-dimensional (2D) materials exhibit many special properties. The key to researching their features is to prepare high-quality larger-area monolayer 2D materials. Metal-assisted mechanical exfoliation method offers the possibility.
View Article and Find Full Text PDFSci Rep
January 2025
Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str, P.O. 12622, Dokki Giza, Egypt.
A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.
View Article and Find Full Text PDFNat Commun
January 2025
Max Planck Institute of Colloids and Interfaces, Colloid Chemistry Department, Am Mühlenberg 1, 14476, Potsdam, Germany.
Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!