Vibrational spectroscopy is a cornerstone technique for molecular characterization and offers an ideal target for the computational investigation of molecular materials. Building on previous comprehensive assessments of efficient methods for infrared (IR) spectroscopy, this study investigates the predictive accuracy and computational efficiency of gas-phase IR spectra calculations, accessible through a combination of modern semiempirical quantum mechanical and transferable machine learning potentials. A composite approach for IR spectra prediction based on the double-harmonic approximation, utilizing harmonic vibrational frequencies in combination squared derivatives of the molecular dipole moment, is employed. This approach allows for methodical flexibility in the calculation of IR intensities from molecular dipoles and the corresponding vibrational modes. Various methods are systematically tested to suggest a suitable protocol with an emphasis on computational efficiency. Among these methods, semiempirical extended tight-binding (xTB) models, classical charge equilibrium models, and machine learning potentials trained for dipole moment prediction are assessed across a diverse data set of organic molecules. We particularly focus on the recently reported foundational machine learning potential MACE-OFF23 to address the accuracy limitations of conventional low-cost quantum mechanical and force-field methods. This study aims to establish a standard for the efficient computational prediction of IR spectra, facilitating the rapid and reliable identification of unknown compounds and advancing automated high-throughput analytical workflows in chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672665 | PMC |
http://dx.doi.org/10.1021/acs.jctc.4c01157 | DOI Listing |
Expert Rev Med Devices
January 2025
Division of Gastroenterology, P.D Hinduja Hospital, Mumbai, India.
Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).
View Article and Find Full Text PDFInflammation
January 2025
Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China.
Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!