Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Survivability and tolerance of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria in harsh environments, especially under varying temperatures, are a bottleneck for the effective application of bioremediation. In this study, a temperature adaptation system (TAS) was constructed by combining a customized thermotolerant system with a customized cold-resistant system to realize the temperature-responsive regulation of the PAH-degrading mesophilic bacterium s US6-1. The innovative dual-pronged TAS strategy enabled the chassis strain to effectively tackle conditions under varying temperatures, ensuring robust biological activities across a broadened temperature spectrum and exhibiting the potential to realize the high-efficiency PAH degradation of US6-1 in bioremediation. Furthermore, the temperature-responsive regulation achieved using the TAS circuit is likely promising for creating intelligent microbial cell factories and avoiding precise temperature maintenance, making it highly useful for industrial applications.IMPORTANCEEnvironmental temperature is among the extremely important factors that determine the bioactivities of pollutant-degrading microorganisms in bioremediation. Effectively maintaining the survivability and tolerance of mesophilic microorganisms under harsh conditions and varying temperatures remains a challenge in the application of pollutant bioremediation. This study, for the first time, developed a temperature adaptation system by combining a customized thermotolerant system with a customized cold-resistant system to realize the temperature-responsive regulation of the polycyclic aromatic hydrocarbon (PAH)-degrading mesophilic bacterium s US6-1, thus diminishing the need for precise temperature control in PAH bioremediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1128/aem.01484-24 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!