Modifying Our Environment to Improve Outcomes in Inflammatory Bowel Diseases?

United European Gastroenterol J

Department of Gastroenterology, University Rouen Normandie, INSERM, ADEN UMR1073, "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", CHU Rouen, Rouen, France.

Published: December 2024

Download full-text PDF

Source
http://dx.doi.org/10.1002/ueg2.12734DOI Listing

Publication Analysis

Top Keywords

modifying environment
4
environment improve
4
improve outcomes
4
outcomes inflammatory
4
inflammatory bowel
4
bowel diseases?
4
modifying
1
improve
1
outcomes
1
inflammatory
1

Similar Publications

Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.

View Article and Find Full Text PDF

In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. Platycodon grandiflorus, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in P.

View Article and Find Full Text PDF

Defluorination reactions are increasingly vital due to the extensive use of organofluorine compounds with robust carbon-fluorine (C-F) bonds; particularly, the efficient defluorination of widespread and persistent per- and polyfluoroalkyl substances under mild conditions is crucial due to their accumulation in the environment and human body. Herein, we demonstrate that surface-modified silicate of pronounced proton affinity can confine active hydrogen (•H) onto nanoscale zerovalent iron (nZVI) by withdrawing electrons from nZVI to react with bound protons, generating confined active hydrogen (•H) for efficient defluorination under ambient conditions. The exposed silicon cation (Si) of silicate functions as a Lewis acid site to activate the C-F bond by forming Si.

View Article and Find Full Text PDF

Self-Healing Superhydrophobic Coatings with Multiphase Repellence Property.

ACS Appl Mater Interfaces

January 2025

Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.

Developing versatile, scalable, and durable coatings that repel various matters in different service environments is of great importance for engineered materials applications but remains highly challenging. Here, the mesoporous silica microspheres (HMS) fabricated by the hard template method were utilized as micro-nanocontainers to encapsulate the hydrophobic agent of perfluorooctyltriethoxysilane (F13) and the corrosion inhibitor of benzotriazole (BTA), forming the functional microsphere of F-HMS(BTA). Moreover, the synthesized organosilane-modified silica sol adhesive (SMP) and F-HMS(BTA) were further employed as the binder and functional filler to construct a superhydrophobic self-healing coating of SMP@F-HMS(BTA) on various engineering metals through scalable spraying.

View Article and Find Full Text PDF

Modulation of RuO Nanocrystals with Facile Annealing Method for Enhancing the Electrocatalytic Activity on Overall Water Splitting in Acid Solution.

Adv Sci (Weinh)

January 2025

Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China.

RuO-based materials are considered an important kind of electrocatalysts on oxygen evolution reaction and water electrolysis, but the reported discrepancies of activities exist among RuO electrocatalysts prepared via different processes. Herein, a highly efficient RuO catalysts via a facile hydrolysis-annealing approach is reported for water electrolysis. The RuO catalyst dealt with at 200 °C (RuO-200) performs the highest activities on both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acid with overpotentials of 200 mV for OER and 66 mV for HER to reach a current density of 100 mA cm as well as stable operation for100 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!