Biofouling communities were examined at five depths at two salmon farms (Doctor Islets (DI), Wicklow Point (WP)) in British Columbia, Canada from April/May to October 2020. In addition, various water quality parameters were measured and the jellyfish numbers were quantified. Biofouling communities were mainly composed of Mollusca (primarily spp.), arthropods (mostly harpacticoids), and hydroids (predominantly sp.), while jellyfish samples were made up mostly of medusa-form sp. At DI, all variables except ammonia were associated with biofouling counts, all variables except depth were associated with hydroid biomass, while only temperature, dissolved oxygen, ammonia, and nitrate were associated with jellyfish. At WP, all variables except phosphate and silica were associated with biofouling counts, only depth was associated with hydroid biomass, and only ammonia was associated with jellyfish. Insights into what environmental variables are correlated with biofouling organisms and jellyfish may assist with the development of effective mitigation strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2024.2430353 | DOI Listing |
Microb Cell Fact
December 2024
Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms.
View Article and Find Full Text PDFWater Res
December 2024
CSIRO Environment, Centre for Environment and Life Sciences, Private Bag No 5, Wembley, Western Australia 6913, Australia. Electronic address:
Harvesting of stormwater and injecting it into aquifers for storage and recovery during high water demand periods is a promising technology for augmenting conventional water reserves. However, little has been known on how stormwater impacts the biofouling of water distribution infrastructure. This study evaluated the effect on harvested and limestone aquifer treated stormwater on biofilm formation in a pilot distribution pipe network compared to an identical drinking water pipe rig.
View Article and Find Full Text PDFEnviron Microbiome
December 2024
Laboratoire MAPIEM, Université de Toulon, Toulon, France.
While waves, swells and currents are important drivers of the ocean, their specific influence on the biocolonization of marine surfaces has been little studied. The aim of this study was to determine how hydrodynamics influence the dynamics of microbial communities, metabolic production, macrofoulers and the associated vagile fauna. Using a field device simulating a shear stress gradient, a multi-scale characterization of attached communities (metabarcoding, LC-MS, biochemical tests, microscopy) was carried out for one month each season in Toulon Bay (northwestern Mediterranean).
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin, 150090, China.
The gravity-driven membrane (GDM) system is an energy-efficient and environmentally sustainable water purification process; however, after prolonged operation, its membrane flux remains relatively low, making it necessary to adopt effective strategies for improving system performance. In this study, the effects of hydrostatic pressure (60, 100, 200 mbar) and pre-coating with aluminum-based flocs (ABF) on GDM flux and organic matter removal were investigated, and the regulatory mechanisms of the bio-cake layer were explored through interactions between morphological structure, composition and microbes. The results showed that the stable flux of the GDM-ABF system at a hydrostatic pressure of 60 mbar was almost equal to that at 100 mbar, and it outperformed higher hydrostatic pressure in organic matter removal, resulting in a more porous bio-cake layer structure.
View Article and Find Full Text PDFBiofouling
December 2024
Mowi Canada West, Campbell River, BC, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!