Prevention of transmission of African swine fever virus (ASFV) through contaminated feed ingredients and complete feed is an important component of biosecurity protocols for global feed supply chains. Use of extended storage times for feed ingredients has become a popular and emerging mitigation strategy that may allow partial inactivation of ASFV before manufacturing swine feeds. However, the effectiveness of this strategy is unclear because limited studies have been conducted using diverse methodologies and insufficiently sensitive measures of virus viability of only a few types of feed matrices. Therefore, interpretation of results from these studies has made providing prudent recommendations difficult. Furthermore, although a few studies have shown that feed is a plausible route of transmission of ASFV to pigs, there are conflicting findings on the infectivity of ASFV that may be present in feed, which may be related to the extent that ASFV is degraded in the pig's digestive system after it is consumed. Therefore, the objectives of this study were to use a surrogate ASFV-like algal virus (; EhV) to determine stability in corn- and soybean-based feed ingredients and complete feed during a 120-day storage period at temperatures up to 34°C, and EhV survival in various feed matrices during three stages of an digestion process. Results indicated that inoculating corn- and soybean-based feed ingredients and complete feed with EhV and storing them at 4°C, 24°C, or 34°C for up to 120 days did not result in the complete inactivation of EhV in any of these matrices. Because EhV has similar environmental and thermal resilience to ASFV, these results indicate that both viruses can maintain viability in various feed matrices during long-term storage and suggest that extending storage time up to 120 days is not an effective mitigation practice against ASFV. We also determined that between approximately 5- to more than 7-log (99.999 to 99.99999%) reductions in EhV in various feed matrices occur during the entire digestion and fermentation process. These reductions appear to be correlated with the chemical composition of the matrices, potentially explaining inconsistencies in ASFV infection when pigs consume infectious doses of contaminated feed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631853 | PMC |
http://dx.doi.org/10.3389/fvets.2024.1498977 | DOI Listing |
Transl Anim Sci
December 2024
Department of Agricultural and Environmental Sciences, College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA.
Hempseed meal (HSM) is a potential alternative feedstuff for livestock due to its high protein content, but it has not been approved for animal feed in the United States due to safety concerns. This study was conducted to determine the effects of HSM on feed intake, growth performance, serum biochemistry, ruminal papillae morphology, ruminal fermentation profiles, and carcass characteristics of intact male goats. Thirty-six Boer × Spanish intact male goats were randomly assigned to one of four experimental diets ( = 9 goats/diet): 0%, 10%, 20%, and 30% HSM on as-fed basis.
View Article and Find Full Text PDFSci Rep
January 2025
BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France.
J Dairy Sci
January 2025
ICREA (Institució de Recerca i Estudis Avançats), 08010 Barcelona, Spain; Department of Animal and Veterinary Sciences, Universitat de Lleida, 25198 Lleida, Spain.
Sustainable alternatives to high environmental input feed ingredients are important to reducing the environmental impact of animal agriculture. Protein and oil extracted from cultivation of black soldier fly (Hermetia illucens) larvae (BSFL) on waste feedstocks such as manure, food waste and plant residues could be a suitable source of nutrients. The oil from BFSL contains large amounts of saturated fatty acids, particularly lauric acid, and may be a more sustainable alternative to palm and coconut oils that are currently used in calf milk replacers in many parts of the world.
View Article and Find Full Text PDFAquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA).
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Federal Institute of Education, Science, and Technology of Amazonas, Downtown Campus, Manaus, Amazonas, Brazil.
This study evaluated the effects of incorporating biological silage from tambaqui (Colossoma macropomum) by-products (BST) on the performance, hematological and plasma biochemical parameters, and egg quality (physical, proximate composition and sensory characteristics) of older commercial hens. The BST was prepared by ensiling tambaqui by-products with lactic acid bacteria, cassava trimmings, and preservatives, producing a nutrient-rich, high-protein feed ingredient. One hundred and twenty Hisex Brown hens (83 weeks old) were divided into five treatment groups, each receiving diets with 0, 1, 2, 3, or 4% BST.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!