We report the synthesis and characterization of an artificial peroxygenase (CoNSA-POase) with CoN active sites by supporting single-atom cobalt on polymeric carbon nitrogen, which exhibits high activity, selectivity, stability, and reusability in the oxidation of aromatic alkanes to ketones. Density functional theory calculations reveal a different catalytic mechanism for the artificial peroxygenase from that of natural peroxygenases. In addition, continuous-flow systems are employed to combine CoNSA-POase with enantiocomplementary ketoreductases as well as an amine dehydrogenase, enabling the enantioselective synthesis of chiral alcohols and amines from hydrocarbons with significantly improved productivity. This work, emulating nature and beyond nature, provides a promising design concept for heme enzyme-based transformations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629291 | PMC |
http://dx.doi.org/10.1021/acscatal.4c03161 | DOI Listing |
ACS Catal
December 2024
School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China.
Faraday Discuss
September 2024
CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
Cytochrome P450 monooxygenases (P450s) are well recognized as versatile bio-oxidation catalysts. However, the catalytic functions of P450s are highly dependent on NAD(P)H and redox partner proteins. Our group has recently reported the use of a dual-functional small molecule (DFSM) for generating peroxygenase activity of P450BM3, a long-chain fatty acid hydroxylase from .
View Article and Find Full Text PDFSci Bull (Beijing)
November 2024
State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address:
Biotechnol J
May 2024
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using HO. Recently, the Molecular Lego approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides HO in-situ by the sarcosine oxidation.
View Article and Find Full Text PDFJ Hazard Mater
March 2024
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China. Electronic address:
Sulfonamide antibiotics, a family of broad-spectrum antibiotic drugs, are increasingly used in aquaculture and are frequently detected in aquatic environments. This poses a potential threat to organisms and may cause the evolution of antimicrobial resistance. Therefore, it is important to develop an environmentally friendly and efficient biocatalyst to degrade sulfonamides (SAs) such as sulfadiazine (SD) and sulfathiazole (ST).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!