A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development, deployment, and continuous monitoring of a machine learning model to predict respiratory failure in critically ill patients. | LitMetric

Objectives: This study describes the development and deployment of a machine learning (ML) model called Vent.io to predict mechanical ventilation (MV).

Materials And Methods: We trained Vent.io using electronic health record data of adult patients admitted to the intensive care units (ICUs) of the University of California San Diego (UCSD) Health System. We prospectively deployed Vent.io using a real-time platform at UCSD and evaluated the performance of Vent.io for a 1-month period in silent mode and on the MIMIC-IV dataset. As part of deployment, we included a Predetermined Changed Control Plan (PCCP) for continuous model monitoring that triggers model fine-tuning if performance drops below a specified area under the receiver operating curve (AUC) threshold of 0.85.

Results: The Vent.io model had a median AUC of 0.897 (IQR: 0.892-0.904) with specificity of 0.81 (IQR: 0.812-0.841) and positive predictive value (PPV) of 0.174 (IQR: 0.148-0.176) at a fixed sensitivity of 0.6 during 10-fold cross validation and an AUC of 0.908, sensitivity of 0.632, specificity of 0.849, and PPV of 0.235 during prospective deployment. Vent.io had an AUC of 0.73 on the MIMIC-IV dataset, triggering model fine-tuning per the PCCP as the AUC was below the minimum of 0.85. The fine-tuned Vent.io model achieved an AUC of 0.873.

Discussion: Deterioration of model performance is a significant challenge when deploying ML models prospectively or at different sites. Implementation of a PCCP can help models adapt to new patterns in data and maintain generalizability.

Conclusion: Vent.io is a generalizable ML model that has the potential to improve patient care and resource allocation for ICU patients with need for MV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633942PMC
http://dx.doi.org/10.1093/jamiaopen/ooae141DOI Listing

Publication Analysis

Top Keywords

model
9
development deployment
8
machine learning
8
learning model
8
ventio
8
mimic-iv dataset
8
model fine-tuning
8
ventio model
8
auc
6
deployment continuous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!