Background: The pathogenetic mechanisms of ventilator-induced lung injury (VILI) still need to be elucidated. The mechanical forces during mechanical ventilation are continually sensed and transmitted by mechanosensitive ion channels (MSICs) in pulmonary endothelial, epithelial, and immune cells. In recent years, MSICs have been shown to be involved in VILI.

Methods: A systematic search across PubMed, the Cochrane Library, Web of Science, and ScienceDirect was performed from inception to March 2024, and the review was conducted in accordance with PRISMA guidelines. The potential eligible studies were evaluated by two authors independently. Study characteristics, quality assessment, and potential mechanisms were analyzed.

Results: We included 23 eligible studies, most of which were performed with murine animals . At the level, 52% and 48% of the experiments were conducted with human or animal cells, respectively. No clinical studies were found. The most reported MSICs include Piezo channels, transient receptor potential channels, potassium channels, and stretch-activated sodium channels. Piezo1 has been the most concerned channel in the recent five years. This study found that signal pathways, such as RhoA/ROCK1, could be enhanced by cyclic stretch-activated MSICs, which contribute to VILI through dysregulated inflammation and immune responses mediated by ion transport. The review indicates the emerging role of MSICs in the pathogenesis of VILI, especially as a signal-transmitting link between mechanical stretch and pathogenesis such as inflammation, disruption of cell junctions, and edema formation.

Conclusions: Mechanical stretch stimulates MSICs to increase transcellular ion exchange and subsequently generates VILI through inflammation and other pathogeneses mediated by MSICs signal-transmitting pathways. These findings make it possible to identify potential therapeutic targets for the prevention of lung injury through further exploration and more studies.

Systematic Review Registration: https://inplasy.com/inplasy-2024-10-0115/, identifier INPLASY2024100115.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631737PMC
http://dx.doi.org/10.3389/fimmu.2024.1479230DOI Listing

Publication Analysis

Top Keywords

lung injury
12
mechanosensitive ion
8
ion channels
8
eligible studies
8
mechanical stretch
8
msics
7
channels
6
emerging roles
4
roles mechanosensitive
4
ion
4

Similar Publications

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

View Article and Find Full Text PDF

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common critical illness. Supportive therapy is still the main strategy for ALI/ARDS. Macrophages are the predominant immune cells in the lungs and play a pivotal role in maintaining homeostasis, regulating metabolism, and facilitating tissue repair.

View Article and Find Full Text PDF

Docetaxel is a chemotherapeutic agent commonly used against breast cancer, nonsmall cell lung cancer, gastric, prostate, head and neck cancer. Docetaxel- or taxane-induced interstitial lung disease (ILD) remains a relatively rare reported adverse event. Although rare, this complication remains an important event to identify and it carries a high mortality.

View Article and Find Full Text PDF

Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.

Chin J Traumatol

December 2024

Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:

Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.

Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.

View Article and Find Full Text PDF

Podocyte injury is a major biomarker of primary glomerular disease that leads to massive proteinuria and kidney failure. Ginsenoside Rk1, a substance derived from ginseng, has several pharmacological activities, such as anti-apoptotic, anti-inflammatory, and antioxidant effects. In this study, our goal is to investigate the roles and mechanisms of ginsenoside Rk1 in podocyte injury and acute kidney injury (AKI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!