Solar Energy-Promoted Bisphenol A Degradation with Immobilized Laccase in an FeO-Embedded Metal-Organic Framework.

Langmuir

Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.

Published: December 2024

Bisphenol A (BPA) is a well-recognized endocrine-disrupting chemical that poses risks to both human health and the environment. Laccase can effectively biodegrade bisphenol A, but the low environmental temperature (∼25 °C) restricts the biodegradation efficiency. In this study, the enzyme laccase and FeO with solar-thermal conversion capability were coimmobilized into zeolitic imidazolate framework-8 (Lac@ZIF-8-FeO) to facilitate efficient biodegradation of bisphenol A under simulated solar irradiation. Compared to free laccase, Lac@ZIF-8-FeO exhibited high activity recovery (115.5%), an ∼39% increased catalytic constant, more effective bisphenol A biodegradation (up to 24-fold) at extensive bisphenol A concentrations (5-100 mg/L), excellent thermal stability (50 °C, 12 h), acid-tolerance (pH 3), and storage ability in 10 days. Simulated solar irradiation (1 kW/m) increased the temperature of Lac@ZIF-8-FeO solution (10 μg laccase/mL) from 25 to 42.5 °C within 15 min, resulting in 96.4% biodegradation of bisphenol A within 60 min, nearly double the biodegradation efficiency under dark condition (55.9%). Furthermore, Lac@ZIF-8-FeO maintained 99.0% biodegradation efficiency even after 12 recycles of use under simulated solar irradiation (5 mg/L bisphenol A, 80 min/cycle). This work has thus offered efficient biocatalysis for integrating solar-energy promotion and enzymatic catalysis in treating environmental BPA pollutants. Further, the experimental findings benefited from the development of more sustainable and high-performance immobilized enzyme preparations for pollutant treatment via solar-thermal promotions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c03349DOI Listing

Publication Analysis

Top Keywords

biodegradation efficiency
12
simulated solar
12
solar irradiation
12
bisphenol
8
biodegradation bisphenol
8
biodegradation
6
solar
4
solar energy-promoted
4
energy-promoted bisphenol
4
bisphenol degradation
4

Similar Publications

Demands for animal products are projected to increase in the future, and animal production is key to agricultural sustainability and food security; consequently, enhancing ruminant livestock production efficiencies in sustainable ways is a major goal for the livestock industry. Developmental programming is the concept that various stressors, including compromised maternal nutrition during critical developmental windows will result in both short- and long-term changes in the offspring. Ruminant models of developmental programming indicate that compromised maternal nutrition, including global under and over-nutrition, macronutrients, and specific micronutrients, including amino acids (Met and Arg), vitamins (folate, B, and choline), and minerals (sulfur, cobalt, and selenium) can alter offspring outcomes.

View Article and Find Full Text PDF

A heparinase III (NsHep-III) from Niabella sp. was identified, cloned, and expressed as soluble form in E. coli BL21 (DE3).

View Article and Find Full Text PDF

Agro-industrial wastes and their application perspectives in metal decontamination using biocomposites and bacterial biomass: a review.

World J Microbiol Biotechnol

December 2024

Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.

Contamination of water bodies is a significant global issue that results from the deliberate release of pollutants into the environment, especially from mining and metal processing industries. The main pollutants generated by these industries are metallic wastes, particularly metals, which can cause adverse effects on the environment and human health. Therefore, it is crucial to develop effective and sustainable approaches to prevent their discharge into the environment.

View Article and Find Full Text PDF

Background: The multi-biological barriers present in the inflammatory microenvironment severely limit the targeted aggregation of anti-inflammatory drugs in the lesion area. However, conventional responsive drug carriers inevitably come into contact with several pro-responsive stimulatory mediators simultaneously, leading to premature drug release and loss of most therapeutic effects. Breaking through the multi-level barriers of the inflammatory microenvironment is essential to improve the enrichment and bioavailability of drugs.

View Article and Find Full Text PDF

Background: The aim of this study is to investigate the effect of soil water stability on maize (Zea mays L.) yield, water use, and its photosynthetic physiological mechanisms, and to innovate the relationship between maize and soil water, which currently only considers soil water content and neglects soil water stability.

Methods: An organized water experiment was conducted on maize.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!