Uranium extraction from seawater (UES) is crucial for ensuring the sustainable development of nuclear power and has seen significant advancements in recent years. However, natural seawater is a highly complex biogeochemical system, characterized by an extremely low uranium (U) concentration (≈3.3 µg L), abundant competitive ions, and significant marine biological pollution, making UES a formidable challenge. This review addresses the challenges encountered in UES and explores potential methods for enhancing the industrial UES system, including membrane separation, electrochemistry, photocatalysis, and biosorption. Additionally, several representative marine tests are summarized and restrictive factors of large-scale UES are analyzed. Finally, the further development of UES from laboratory to industry applications is promoted, with a focus on technological innovation. The goal is to stimulate innovative ideas and provide fresh insights for the future development of the UES system, bridging the gap between laboratory research and industrial implementation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202401598 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
Uranium (U), a high-performing, low-emission energy source, is driving sustainable economic growth. Herein, we synthesized two crystalline phases (HPOC-α and β) by an unreported amidoxime organic cage used for uranium capture. The revealed crystal structures and uranium adsorption test showed that accessible functional groups were essential to uranyl ions sorption.
View Article and Find Full Text PDFACS Omega
December 2024
Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
Plutonium uranium reduction extraction (PUREX) is a liquid-liquid extraction process used to recover plutonium (Pu) and uranium (U) from irradiated uranium fuel for various nuclear-related applications. Despite extensive efforts, quantitative prediction of liquid-liquid extraction parameters, i.e.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
Extracting uranium from seawater is crucial for tapping oceanic resources vital to future energy supply. This study synthesized a novel nitrogen vacancy carbon nitride (NCN) grafted polyethyleneimine (PEI) composite material (NCNP). Experiments and molecular dynamics simulations reveal that NCNP effectively hinders the diffusion of uranyl ions (UO ) to the NCN surface, thereby inhibiting electron transfer reactions.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
The source and after treatment of uranium, a key aspect of its use as a nuclear fuel, had been a topic of intense debate among developers. Therefore, a novel antimicrobial amidoxime-functionalized chitosan/polyacrylamide dual network hydrogel (CP-AO) had been developed utilizing a straightforward methodology. The results demonstrated excellent adsorption capacity and selectivity for uranium extraction under varying conditions, the U(VI) removal was above 94 % when pH was 4.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia-Luo Road, Jia-Ding District, Shanghai 201800, China.
The most promising material for uranium extraction from saltwater is generally acknowledged to be fibrous adsorbents. An irradiation-modified anti-biofouling ultra-high-molecular-weight polyethylene (UHMWPE--PGAO) fibrous adsorbent with a hyperbranched structure was synthesized. It exhibited adsorption capacities of 314.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!