Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/d41586-024-03990-2 | DOI Listing |
Heliyon
January 2025
School of Human Movement and Nutrition Science, The University of Queensland, Brisbane, Australia.
The human ankle joint complex, consisting of calcaneus, talus, and tibia, is often simplified as a single functional ankle joint, neglecting the motion of the talus. Understanding the individual contributions of the talus and calcaneus is crucial for comprehending ankle joint complex function in healthy populations, and alterations in function that may exist in clinical conditions. To achieve accurate bone kinematics, high-resolution biplanar videoradiography was used with participants engaged in walking and running (n = 9) and hopping (n = 9) with no overlap in participants.
View Article and Find Full Text PDFAm J Transl Res
December 2024
School of Physical Education, Nanchang University Nanchang, Jiangxi, China.
Objective: To investigate the protective effects of ankle braces in patients with functional ankle instability.
Methods: This retrospective study involved 30 participants recruited from January 2023 to December 2023 at School of Physical Education, Nanchang University. These participants were divided into an ankle brace group wearing braces and a control group without braces.
Phys Med Biol
January 2025
Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.
. Modeling of the collimator-detector response (CDR) in single photon emission computed tomography (SPECT) reconstruction enables improved resolution and accuracy, and is thus important for quantitative imaging applications such as dosimetry. The implementation of CDR modeling, however, can become a computational bottleneck when there are substantial components of septal penetration and scatter in the acquired data, since a direct convolution-based approach requires large 2D kernels.
View Article and Find Full Text PDFBehav Genet
December 2024
Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.
Artificial selection yielded four replicate high runner (HR) lines of mice that reached apparent selection limits (~ threefold increase in wheel revolutions per day vs. four control lines), despite maintenance of additive genetic variance. After 68 generations, we used animal models to test for changes in additive-genetic variances and covariance of the two measured components (average speed and duration) of running distance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!