In many clinical and research settings, the scarcity of high-quality medical imaging datasets has hampered the potential of artificial intelligence (AI) clinical applications. This issue is particularly pronounced in less common conditions, underrepresented populations and emerging imaging modalities, where the availability of diverse and comprehensive datasets is often inadequate. To address this challenge, we introduce a unified medical image-text generative model called MINIM that is capable of synthesizing medical images of various organs across various imaging modalities based on textual instructions. Clinician evaluations and rigorous objective measurements validate the high quality of MINIM's synthetic images. MINIM exhibits an enhanced generative capability when presented with previously unseen data domains, demonstrating its potential as a generalist medical AI (GMAI). Our findings show that MINIM's synthetic images effectively augment existing datasets, boosting performance across multiple medical applications such as diagnostics, report generation and self-supervised learning. On average, MINIM enhances performance by 12% for ophthalmic, 15% for chest, 13% for brain and 17% for breast-related tasks. Furthermore, we demonstrate MINIM's potential clinical utility in the accurate prediction of HER2-positive breast cancer from MRI images. Using a large retrospective simulation analysis, we demonstrate MINIM's clinical potential by accurately identifying targeted therapy-sensitive EGFR mutations using lung cancer computed tomography images, which could potentially lead to improved 5-year survival rates. Although these results are promising, further validation and refinement in more diverse and prospective settings would greatly enhance the model's generalizability and robustness.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-024-03359-yDOI Listing

Publication Analysis

Top Keywords

clinical applications
8
imaging modalities
8
minim's synthetic
8
synthetic images
8
demonstrate minim's
8
medical
6
clinical
5
images
5
self-improving generative
4
generative foundation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!