Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To successfully scale-up the production of bio-based building blocks through CO and H-based gas fermentation, it is crucial to deeply understand and control the microbial catalyst response to the bioreactor environment. This study investigates the effects of key process parameters, such as CO and H partial pressures, gas feeding strategies, and mixture composition, on the production pathways of an evolved Clostridium carboxidivorans strain. The ultimate goal is to optimize 1-hexanol production in elevated-pressure stirred-tank reactors. Continuous gas feeding enhanced acetogenic and solventogenic metabolisms, while gas-limited conditions promoted chain elongation to caproic acid. An optimized process, combining an initial gas-limited step followed by a continuous gas phase, increased 1-hexanol production, achieving a maximum biomass-specific productivity of 0.9 g g day. In-situ product extraction improved 1-hexanol carbon selectivity to an unprecedented 60 %. These findings demonstrate the potential of CO and H-fed fermentation to produce high-value chemicals other than ethanol and acetate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131966 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!