Detection of SARS-CoV-2- specific antibodies in domestic cats using different ELISA tests.

J Virol Methods

Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA. Electronic address:

Published: December 2024

The emergence of SARS-CoV-2 raised concerns about the potential for interspecies transmission, particularly among domestic animals. We evaluated the seroprevalence of SARS-CoV-2 antibodies in domestic cats from various sites in North America. A total of 216 serum samples collected between December 2019 and February 2022, were analyzed using four different enzyme-linked immunosorbent assays (ELISAs), including a commercial surrogate virus neutralization test (sVNT), a commercial double antigen test (dN ELISA), and two in-house developed indirect ELISAS based on receptor-binding domain (RBD iELISA) and the nucleocapsid (N iELISA) proteins, respectively. Seropositive samples in the commercial ELISAs were subject to virus neutralization test (cVNT) employing the Wuhan-like USA-WA1/2020 SARS-CoV-2 isolate. Our findings revealed that, 6 % (12/216) of the cat serum samples tested positive by the sVNT, while 4 % (9/216) tested positive for the dN-ELISA. Interestingly, the N iELISA showed a higher seroprevalence, with 31 % of the samples testing positive, possibly due to cross-reactive antibodies against the N protein of other coronavirus commonly found in cats. There was a high concordance between sVNT, cVNT, and RBD iELISA. Among positive sVNT cat serum samples, 75 % (9/12) exhibited neutralizing titers with all samples also being positive by RBD iELISA. Notably, the RBD iELISA and sVNT demonstrated high sensitivity and specificity in detecting SARS-CoV-2 antibodies (100 and 79 %; 100 and 90 %, respectively). In conclusion, our study provides important insights into the seroprevalence of SARS-CoV-2 antibodies in domestic cats, highlighting the potential for interspecies transmission and the need for continued monitoring of SARS-CoV-2 in animal populations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2024.115099DOI Listing

Publication Analysis

Top Keywords

rbd ielisa
16
antibodies domestic
12
domestic cats
12
sars-cov-2 antibodies
12
serum samples
12
potential interspecies
8
interspecies transmission
8
seroprevalence sars-cov-2
8
virus neutralization
8
neutralization test
8

Similar Publications

Detection of SARS-CoV-2- specific antibodies in domestic cats using different ELISA tests.

J Virol Methods

December 2024

Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA. Electronic address:

The emergence of SARS-CoV-2 raised concerns about the potential for interspecies transmission, particularly among domestic animals. We evaluated the seroprevalence of SARS-CoV-2 antibodies in domestic cats from various sites in North America. A total of 216 serum samples collected between December 2019 and February 2022, were analyzed using four different enzyme-linked immunosorbent assays (ELISAs), including a commercial surrogate virus neutralization test (sVNT), a commercial double antigen test (dN ELISA), and two in-house developed indirect ELISAS based on receptor-binding domain (RBD iELISA) and the nucleocapsid (N iELISA) proteins, respectively.

View Article and Find Full Text PDF

Design and optimization of an IgG human ELISA assay reactive to recombinant RBD SARS-CoV-2 protein.

Appl Microbiol Biotechnol

December 2022

Cellargen Biotech SRL, FBCB (School of Biochemistry and Biological Sciences), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina.

Serology assays are essential tools to mitigate the effect of COVID-19, help to identify previous SARS-CoV-2 infections or vaccination, and provide data for surveillance and epidemiologic studies. In this study, we report the production and purification process of the receptor-binding domain (RBD) of SARS-CoV-2 in HEK293 cells, which allowed the design, optimization, and validation of an indirect ELISA (iELISA) for the detection of human anti-RBD antibodies. To find the optimal conditions of this iELISA, a multivariate strategy was performed throughout design of experiments (DoE) and response surface methodology (RSM), one of the main tools of quality by design (QbD) approach.

View Article and Find Full Text PDF

Multiple domestic and wild animal species are susceptible to SARS-CoV-2 infection. Cattle and swine are susceptible to experimental SARS-CoV-2 infection. The unchecked transmission of SARS-CoV-2 in animal hosts could lead to virus adaptation and the emergence of novel variants.

View Article and Find Full Text PDF

Companion animals are susceptible to a variety of coronaviruses, and recent studies show that felines are highly susceptible to SARS-CoV-2 infection. RT-PCR diagnostic is currently the method of choice to detect the presence of SARS-CoV-2-specific viral nucleic acids in animal samples during an active infection; however, serological assays are critical to determine whether animals were exposed to the virus and to determine the seroprevalence of SARS-CoV-2-specific antibodies in a defined population. In this study, we utilized recombinant nucleocapsid (N) protein and the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 expressed in E.

View Article and Find Full Text PDF

Objective: Real-time reverse transcription-polymerase chain reaction is the gold standard for the diagnosis of COVID-19, but it is necessary to utilize other tests to determine the burden of the disease and the spread of the outbreak such as IgG-, IgM-, and IgA-based antibody detection using enzyme-linked immunosorbent assay (ELISA).

Materials And Methods: We developed an indirect ELISA assay to quantitatively measure the amount of COVID-19 IgG, IgM, and IgA antibodies present in patient serum, dried blood, and plasma.

Results: The population cutoff values for positivity were determined by receiver operating characteristic curves to be 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!