The exacerbation of plant invasion by microplastics attracted widespread attention. Pulse resource hypothesis is popular theory to elucidate plant invasion. Our previous work demonstrated biodegradable microplastics (BMPs) could increase the arbuscular mycorrhizal fungi (AMF) colonization rate. Reportedly, AMF can enhance rhizobia colonization. Therefore, we infer the coexistence of BMPs with legumes may lead to an increased colonization of rhizobia with negative feedback regulation of N fixation. This could result in NO-N pulse supply, thereby exacerbating plant invasion. Subsequently, a 60-day pot experiment was conducted using Trifolium repens L. as invasive plant and Oxalis corniculata L. as native plant, with 1% or 5% wt BMPs. AMF colonization, BMPs degradation, NO-N content and pulse supply, rhizobia colonization, relative competitive intensity, replacement diagrams and NO-N utilization were determined. The mechanism was clarified through heat map and structural equation model. The results reveal the greater the NO-N consumption by BMPs, the more AMF promoted rhizobia colonization in T. repens, thereby the larger the pulse amplitude of NO-N supply, then, the higher the NO-N utilization rate of T. repens. It exacerbates T. repens invasion. This study clarifies effects of BMPs on rhizobia's N fixation, and enriches the evidence on mechanism of BMPs exacerbating plant invasion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.125510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!