Rapid cell expansion pushes the Arabidopsis hypocotyl (juvenile stem) through the soil until blue light, acting first through phototropin 1 (phot1) and then through cryptochrome 1 (cry1), suppresses elongation to produce a length characteristic of established, photosynthetically capable seedlings. To determine where these two different blue-light receptors act to suppress hypocotyl elongation, we measured relative elemental growth rate, specifically along the hypocotyl midline at 5-min intervals before and during blue light, using a machine-learning-based image analysis pipeline designed specifically for this kinematic analysis of growth. In darkness, hypocotyl material expanded most rapidly (approximately 4% h) in a broad zone approximately 1 mm below the apical terminus of the hypocotyl (cotyledonary node). Blue light, acting through phot1, rapidly inhibited expansion in this zone, while simultaneously stimulating unexpanded cells in a very narrow, more apical region. Nuclear cry1, and not its cytoplasmic pool, counteracted the phot1-initiated expansion of the small cells in this apical region, preventing them from entering the more basal elongation zone. In a cry1 mutant, expansion of these apical cells proceeded unchecked, reaching rates as high as 6% h to produce the iconic cry1 long-hypocotyl phenotype. The new spatial information shows where to focus future cell and molecular studies of cry1 and phot1 signaling mechanisms and, ecologically, indicates that a seedling may use an apical reservoir of elongation potential to reenter a lit environment should a natural darkening event such as soil disturbance deactivate cry1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2024.11.021 | DOI Listing |
Sci Rep
December 2024
Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 3, 1348, Louvain-La-Neuve, Belgium.
The bioluminescent European brittle star Amphiura filiformis produces blue light at the arm-spine level thanks to a biochemical reaction involving coelenterazine as substrate and a Renilla-like luciferase as an enzyme. This echinoderm light production depends on a trophic acquisition of the coelenterazine substrate. Without an exogenous supply of coelenterazine, this species loses its luminous capabilities.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
The ocean wave energy is considered one of the most promising forms of marine blue energy due to its vast reserves and high energy density. However, traditional electromagnetic power generation technology suffers from drawbacks such as high maintenance costs, heavy structures, and low conversion efficiency, which restricts its application range. The triboelectric nanogenerator (TENG) uses Maxwell displacement current as its internal driving force, which can efficiently convert irregular, low-frequency, and dispersed mechanical energy into electrical energy.
View Article and Find Full Text PDFFront Plant Sci
December 2024
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
Introduction: Introduction: Light is not only essential for plant photosynthesis and growth, but also acts as a signal to regulate its secondary metabolism. Despite the influence of light quality on the yield and flavonoid compounds in commercial crops is well-documented, its role in regulating wild understorey species, particularly medicine plants whose flavonoid biosynthesis driven by multiple spectral regions of canopy sunlight, is less understood.
Methods: To address it, we conducted a light-quality manipulation experiment on Georgi, a widespread understorey medicinal species, with light-emitting diodes (LED).
Int J Biol Macromol
December 2024
Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea. Electronic address:
The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!