Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Atmospheric water harvesting (AWH) is one of the most efficient, sustainable, cost-effective, and promising techniques for addressing world's water scarcity. Over 4.3 billion people around the world struggle to access clean, abundant, and safe drinking water. Additionally, >3.3 million people die each year due to drinking poor quality water. Meanwhile, our atmosphere contains approximately 13,000 trillion liters of water in the form of vapor. Therefore, AWH offers a viable solution to meet the demand for drinking water, even in arid or high humidity regions. AWH can be achieved through methods such as fog harvesting, dew harvesting and sorption-based atmospheric water harvesting (SBAWH). The main aim of this manuscript is to explore the potential of Sorption-Based Atmospheric Water Harvesting (SBAWH) as a solution to the global water scarcity crisis. The study focuses on evaluating the adsorption capacities and performance of various sorbent materials, systems, and devices used in SBAWH. Notably, materials such as silica gel, zeolite, hygroscopic salts, and metal-organic frameworks (MOFs) are highlighted, with MOFs and their composites being recognized as some of the most efficient options for atmospheric water harvesting. This review emphasizes the critical role of AWH techniques in addressing the pressing issue of global water shortages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177885 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!