Coral reef fishes represent an invaluable source of macro- and micro-nutrients for tropical coastal populations. However, several potentially toxic compounds may jeopardize their contribution to food security. Concentrations of metallic compounds and trace elements (MTEs), and persistent organic pollutants (POPs, including pesticides and polychlorobiphenyls PCBs), totalizing 36 contaminants, were measured in coral reef fish from several Pacific islands. The objective of this study was to describe the spatial distribution of these compounds and contaminants in order to identify potential variables explaining their distribution at a Pacific-wide scale. To achieve this, we applied Boosted Regression Trees to model species-specific and community-level contaminant and inorganic compound concentrations at the scale of the tropical Pacific Ocean. Overall, using 15 easily accessible explanatory variables, we successfully explained between 60 and 87 % of the global variation, with fish body size being the most important correlate of MTEs and POPs concentrations in reef fish. Our modeling approach allowed us to estimate and map the distribution of the community-level concentration of 19 contaminants and inorganic compounds at the scale of the equatorial and south Pacific Ocean. Spatial patterns varied significantly depending on the compound, with modeled quantities per 100 g of fish flesh generally being higher in the central and southwest Pacific than in the eastern part of the basin. These patterns were influenced by a combination of biological, environmental, anthropogenic and biogeographical variables. Overall, this approach represents an important step toward the estimation of concentrations of the main compounds on the basis of species identity and fishing location. Our results enhance our understanding of the extent of contamination in the Pacific while underscoring the urgent need for long-term and large-scale spatial monitoring of diverse compounds in this region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!