An electricity-powered future for mixed plastic waste chemical recycling.

Waste Manag

Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium. Electronic address:

Published: December 2024

In contemporary times, global plastic waste production has doubled in comparison to two decades ago, with only 9% effectively recycled. The polymer industry is undergoing a transition to address the disparity between plastic production and end-of-life waste management. Chemical recycling offers a solution by converting plastic waste into its constituent building blocks, or monomers, which can be utilized in the production of new, high-quality plastics. This concise review provides an overview of conventional chemical recycling technologies employing heated reactors, before delving into ongoing efforts towards electrifying the chemical recycling process. A conceptual framework for a fully electrified value chain aimed at achieving plastics circularity is outlined and analyzed. Additionally, attention is given to the challenges posed by industry inertia towards adopting electrified technologies, as well as performance issues stemming from the intermittent nature of renewable energy sources and the availability of long-duration renewable electricity storage options.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2024.12.003DOI Listing

Publication Analysis

Top Keywords

chemical recycling
16
plastic waste
12
electricity-powered future
4
future mixed
4
plastic
4
mixed plastic
4
waste
4
chemical
4
waste chemical
4
recycling
4

Similar Publications

In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.

View Article and Find Full Text PDF

Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO Catalysts.

Environ Sci Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.

The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.

View Article and Find Full Text PDF

Upcycling polynorbornene derivatives into chemically recyclable multiblock linear and thermoset plastics.

Angew Chem Int Ed Engl

January 2025

Colorado State University, Chemistry and Biochemistry, 301 W. Pitkin Street, 215 UCB, 80523, United States, 80523, Fort Collins, UNITED STATES OF AMERICA.

Synthetic polymers have found widespread use with functional lifetimes from seconds to decades. However, the lack of end-of-life treatment for these plastics is causing a significant environmental and human health crisis due to their persistence and bioaccumulation. Upcycling post-consumer plastic waste to products with inherent recyclability is an attractive strategy to tackle this problem, as it can broaden the range of accessible materials and uncover unprecedented features while dealing with current plastic waste.

View Article and Find Full Text PDF

Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.

View Article and Find Full Text PDF

Toward Sustainable Polydienes.

J Am Chem Soc

January 2025

Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

The sustainable management of polydiene waste represents a formidable challenge in the realm of polymer chemistry, given the extensive industrial utilization of polydienes due to their superior elastomeric properties. This comprehensive Perspective addresses the multifaceted obstacles hindering efficient recycling of polydienes, encompassing environmental concerns, technical limitations, and economic disincentives. We systematically dissect the influence of polydienes' chemical structures on their recyclability, tracing the evolution of polydiene utilization and disposal practices while assessing the current landscape of waste management strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!