Optimizing lithium-ion battery (LIB) electrolytes is essential for high-current applications such as electric vehicles, yet experimental techniques to characterize the complex structural dynamics responsible for the lithium transport within these electrolytes are limited. In this study, we used ultrafast infrared spectroscopy to measure chemical exchange, spectral diffusion, and solvation structures across a wide range of lithium concentrations in propylene carbonate-based LiTFSI (lithium bis(trifluoromethanesulfonimide) electrolytes, with the CN stretch of phenyl selenocyanate as the long-lived vibrational probe. Phenyl selenocyanate is shown to be an excellent dynamical surrogate for propylene carbonate in Li solvation clusters. A strong correlation between exchange times and ionic conductivity was observed. This correlation and other observations suggest structural diffusion as the primary transport mechanism rather than vehicular diffusion. Additionally, spectral diffusion observables measured by the probe were directly linked to the desolvation dynamics of the Li clusters, as supported by density functional theory and molecular dynamics simulations. These findings provide detailed molecular-level insights into LIB electrolytes' transport dynamics and solvation structures, offering rational design pathways to advanced electrolytes for next-generation LIBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c13423 | DOI Listing |
J Colloid Interface Sci
December 2024
Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, PR China. Electronic address:
Localized high-concentration electrolytes (LHCEs) offer a new methodology to improve the functionality of conventional electrolytes. Understanding the impact of antisolvents on bulk electrolytes is critical to the construction of sophisticated LHCEs. However, the mechanism of how antisolvent modulates the electrochemical reactivity of the solvation structure in LHCEs remains unclear.
View Article and Find Full Text PDFJ Mol Model
January 2025
Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.
Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
Sodium croconate, a high-voltage organic cathode material, can be applied to high-energy-density and cost-effective organic sodium-ion batteries (OSIBs) as an alternative to traditional lithium-ion batteries. However, organic molecular cathodes generally dissolve into the electrolyte, leading to poor cyclability. Thus, an electrolyte that can address the present limitations and further facilitate the fabrication of highly reversible OSIBs must be developed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA.
Oxidative stress, associated with excessive production of reactive oxygen and nitrogen species (ROS, RNS), contributes to the development and progression of many ailments, such as aging, cardiovascular diseases, Alzheimer's disease, Parkinson's disease, diabetes, cancer, preeclampsia or multiple sclerosis. While phenols and polyphenols are the most studied antioxidants structurally similar compounds such as anilines or thiophenols are sporadically analyzed despite their radical scavenging potential. This work assesses the impact of structural features of phenols and thiophenols on their antioxidant activity.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States.
Electrostatic interactions, hydrogen bonding, and solvation effects can alter the free energies of ionizable functional groups in proteins and other nanoporous architectures, allowing such structures to tune acid-base chemistry to support specific functions. Herein, we expand on this theme to examine how metal sites ( = H, Zn, Co, Co) affect the p of benzoic acid guests bound in discrete porphyrin nanoprisms () in CDCN. These host-guest systems were chosen to model how porous metalloporphyrin electrocatalysts might influence H transfer processes that are needed to support important electrochemical reactions (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!