Dielectric elastomers (DEs) have promising capabilities for soft electromechanical systems, including those for actuation and energy generation. However, their widespread application is restricted by electromechanical instability (EMI) and the requirement for high-voltage operation. This study presents a dual-modal DE system that effectively overcomes these limitations by leveraging a dual-membrane structure. The proposed structure not only suppresses EMI through charge sharing but also enables simultaneous energy harvesting and actuation, enhancing the overall electrical performance of the system. The system demonstrated a remarkable improvement in output performance, exceeding that of traditional single-modal DE generators by up to 30%. The practicality of the system is developed by integrating it into a mechanically powered soft robot capable of locomotion and environmental monitoring using a wireless temperature sensor. This study paves the way for the development of advanced DE-based systems with enhanced stability, functionality, and potential for diverse applications in soft robotics, energy harvesting, and other areas that require coupled electromechanical capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202410724 | DOI Listing |
ACS Appl Electron Mater
December 2024
Department of Electronics and Computer Science, University of Granada, Granada 18071, Spain.
In the evolution of pervasive electronics, it is imperative to significantly reduce the energy consumption of power systems and embrace sustainable materials and fabrication processes with minimal carbon footprint. Within this context, thermoelectric generators (TEGs) have garnered substantial attention in recent years because of the readily available thermal gradients in the environment, making them a promising energy-harvesting technology. Current commercial room-temperature thermoelectrics are based on scarce, expensive, and/or toxic V-VI chalcogenide materials, which limit their widespread use.
View Article and Find Full Text PDFNeural Netw
December 2024
Deep Mining and Rock Burst Research Branch, Chinese Institute of Coal Science, Qingniangou Road No. 5, Beijing, 100013, China.
The essential of semi-supervised semantic segmentation (SSSS) is to learn more helpful information from unlabeled data, which can be achieved by assigning adequate quality pseudo-labels or managing noisy pseudo-labels during training. However, most relevant state-of-the-art (SOTA) methods are mainly devoted to improving one aspect. By revisiting the representative SSSS methods from a robust learning view, this paper discovers that the appropriate combination of multiple noise-robust methods contributes both to assigning sufficient quality pseudo labels and managing noisy labels.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia. Electronic address:
This study focuses on enhancing solar energy capture efficiency by introducing innovative hybrid nanofluids for use in solar thermal collectors, whose performance largely depends on the absorption properties of the working fluid. The newly developed hybrid nanofluids, MXene/NH2-UiO66 (Zr) (noted as MX/UO66) and MXene/MIL-88B (Fe) (noted as MX/ML88), were synthesized using an in-situ solvothermal method, combining annealed Ti3C2Tx MXenes with water-stable metal-organic frameworks (MOFs). These nanofluids achieved high efficiency at low concentrations, providing both economic and performance benefits.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!