A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The influence of observation sequence features on the performance of the Bayesian hidden Markov model: A Monte Carlo simulation study. | LitMetric

The hidden Markov model is a popular modeling strategy for describing and explaining latent process dynamics. There is a lack of information on the estimation performance of the Bayesian hidden Markov model when applied to categorical, one-level data. We conducted a simulation study to assess the effect of the 1) number of observations (250-8.000), 2) number of levels in the categorical outcome variable (3-7), and 3) state distinctiveness and state separation in the emission distribution (low, medium, high) on the performance of the Bayesian hidden Markov model. Performance is quantified in terms of convergence, accuracy, precision, and coverage. Convergence is generally achieved throughout. Accuracy, precision, and coverage increase with a higher number of observations and an increased level of state distinctiveness, and to a lesser extent with an increased level of state separation. The number of categorical levels only marginally influences performance. A minimum of 1.000 observations is recommended to ensure adequate model performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633971PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314444PLOS

Publication Analysis

Top Keywords

hidden markov
16
markov model
16
performance bayesian
12
bayesian hidden
12
simulation study
8
number observations
8
state distinctiveness
8
state separation
8
model performance
8
accuracy precision
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!