[This corrects the article DOI: 10.1371/journal.pone.0258320.].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633973 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315839 | PLOS |
Magn Reson Med
January 2025
Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China.
Purpose: This work aims to raise a novel design for navigator-free multiband (MB) multishot uniform-density spiral (UDS) acquisition and reconstruction, and to demonstrate its utility for high-efficiency, high-resolution diffusion imaging.
Theory And Methods: Our design focuses on the acquisition and reconstruction of navigator-free MB multishot UDS diffusion imaging. For acquisition, radiofrequency-pulse encoding was used to achieve controlled aliasing in parallel imaging in MB imaging.
J Chem Theory Comput
January 2025
Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States.
A dispersion-corrected density functional theory (DFT+D) method has been developed. It includes a nonhybrid dispersionless generalized gradient approximation (GGA) functional paired with a literature-parametrized dispersion function. The functional's 9 adjustable parameters were optimized using a training set of 589 benchmark interaction energies.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.
We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.
View Article and Find Full Text PDFCarbon dioxide capture is a vital approach for mitigating air pollution and global warming. In this context, metal-organic frameworks are promising candidates. Particularly, MIL-88A (M), where the metal nodes (M) are connected to fumarate linkers in its structure, has demonstrated significant potential for CO capture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!